
The IBM
PCIXCC: A new
cryptographic
coprocessor for
the IBM eServer

T. W. Arnold
L. P. Van Doorn

IBM has designed special cryptographic processors for its
servers for more than 25 years. These began as very simple
devices, but over time the requirements have become
increasingly complex, and there has been a never-ending
demand for increased speed. This paper describes the
PCIXCC, the new coprocessor introduced in the IBM
z990 server. In many ways, PCIXCC is a watershed design. For
the first time, a single product satisfies all requirements across
all IBM server platforms. It offers the performance demanded
by today�s Web servers, it supports the complex and specialized
cryptographic functions needed in the banking and finance
industry, and it uses packaging technology that leads the world
in resistance to physical or electrical attacks against its secure
processes and the secret data it holds. Furthermore, it is
programmable and highly flexible, so that its function can
be easily modified to meet new requirements as they appear.
These features are possible because of innovative design in
both the hardware and embedded software for the card. This
paper provides an overview of that design.

Introduction
IBM has a rich history in the field of cryptography and
in developing products that implement cryptographic
functions. In the 1970s, IBM developed the Lucifer
algorithm [1], which was the basis for the Data Encryption
Standard (DES), the most widely used cryptographic
algorithm in the world for more than 20 years.
Immediately after the National Institute of Standards
and Technology (NIST), then the National Bureau of
Standards, adopted DES as a standard, IBM began
designing and delivering products that enabled customers
to protect their data. High-speed-DES channel-attached
encryption units such as the IBM 3845 and 3848 were
designed for S/370* mainframe users, and banking-
oriented products, such as the 3600 finance system, were
designed to meet the specific needs of banks and other
financial institutions.

As technology improved and customer use of encryption
increased in sophistication, IBM continued to develop

new, leading-edge cryptographic products. In the
1980s, the 3600 finance system was replaced with the
4700 system, which included improved cryptographic
functions for the banking industry. In the mid-1980s, the
IBM finance industry product organization began research
into advanced security technologies, including smart
cards and high-security, high-performance DES-based
cryptographic coprocessors for use in personal computers.
This research led to the development of the transaction
security system (TSS) product family, which was
introduced in 1989. TSS included a fully integrated set of
security components that could be used individually or
together to provide an unprecedented level of security.
The components included several technologies that are
still important today.

TSS saw the introduction of the IBM Common
Cryptographic Architecture (CCA), a carefully architected
set of cryptographic functions and application
programming interfaces (APIs) that provide both general-

�Copyright 2004 by International Business Machines Corporation. Copying in printed form for private use is permitted without payment of royalty provided that (1) each
reproduction is done without alteration and (2) the Journal reference and IBM copyright notice are included on the first page. The title and abstract, but no other portions, of this
paper may be copied or distributed royalty free without further permission by computer-based and other information-service systems. Permission to republish any other portion of

this paper must be obtained from the Editor.

0018-8646/04/$5.00 © 2004 IBM

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. W. ARNOLD AND L. P. VAN DOORN

475

purpose functions and a broad set of functions designed
specifically to secure financial transactions. CCA
introduced strong key typing and related key-management
functions which prevented many attacks that had been
possible with earlier systems based only on the basic
cryptographic algorithms themselves [2, 3].

The TSS product family included the following
components:

● A highly secure cryptographic coprocessor card (the
4755).

● The personal security card (PSC), an innovative smart
card implementing a subset of the CCA and able to
integrate securely with the other TSS components to
support user authentication, secure data storage, and
portable access rights to determine a user�s authority
when using the other components.

● A high-security smart card reader (the 4754) which
served as the reader for the PSC and could also operate
as a cryptographic processor.

● A channel-attached cryptographic processor (the 4753),
which used the 4755, 4754, and personal security card to
provide cryptographic functions for mainframe systems.

● A signature dynamics biometric pen and processor,
which identified users on the basis of the movement of
the pen as they signed their names with normal ink on
any paper document.

A fundamental part of the TSS hardware was secure,
tamper-resistant packaging technology to ensure that
sophisticated attackers would not be able to break into
the cryptographic devices to extract keys and other
secret data, insert Trojan horses, or otherwise modify the
function of the devices. This technology and the research
that led to it formed much of the basis for the NIST FIPS
140 Standard [4], which is used to rigorously test such
security today.

Following the introduction of TSS and CCA, the
technology was adopted for use on other IBM platforms.
The 4755 cryptographic adapter card was the basis for a
cryptographic feature on the AS/400* midrange system.
The S/390* mainframe developers designed a high-speed
CCA processor with an Integrated Cryptographic Feature
(ICRF) [5] that provided similar capabilities in their
system. This gave customers a compatible, highly secure
cryptographic architecture across the entire range of
servers, from personal computers to mainframes.

As the TSS product family aged, IBM developed the
4758 PCI cryptographic coprocessor, the first of a new
generation of coprocessors. The 4758 again provided CCA
functions in an industry-leading tamper-resistant package
[6, 7]. It was the first product ever to reach the highest
level of protection, NIST FIPS 140-1 Level 4. IBM
supported the 4758 on all of its server families, from

Intel**-based personal computers through the RS/6000*,
AS/400, and S/390 systems. 1 Later, 4758 technology was
refreshed with faster cryptographic hardware and other
improvements, again supported on all of the IBM server
platforms.

With the introduction of the CMOS-based IBM
mainframe systems, the ICRF was replaced with a very
fast single-chip cryptographic processor, the Cryptographic
Coprocessor Feature, or CCF. This became a standard, no-
cost component of all zSeries CMOS systems, giving
zSeries customers the advantage of free, high-
performance, secure cryptographic functions.

The IBM-developed cryptographic chip in the 4758
was also used to develop a cryptographic accelerator
card, directed mainly toward secure-sockets-layer (SSL)
[8] performance. The accelerator is supported on all
server platforms except for xSeries*.

Lessons learned
Our experience with the earlier products taught us many
lessons about what our customers want and what the
products have to do. This section highlights some
important issues that led to our formulation of the
requirements and subsequent design of the new
cryptographic coprocessor.

Flexibility
Cryptographic applications are constantly evolving, and no
single set of cryptographic functions can meet the needs of
all customers over the life of a product. Each year, there
are new application areas and new standards that dictate
cryptographic product features. In addition, many
customers have requirements that are unique to their
geography or to their application area. For example, many
countries have local banking regulations that impose
cryptographic requirements that are different from those
of the rest of the world.

Our experience with these applications has taught us
that flexibility is an essential feature for our cryptographic
coprocessors. We must not design the product with a fixed
set of functions; it must be easy to add new functions over
time. Furthermore, for specific customers we must have
the ability to add special functions to the coprocessor that
would not be in the standard product function set.

The need for updates to the cryptographic functions
over time implies a related requirement: The coprocessor
software should be able to be updated in the field.
However, since this is a highly secure device, that process
is much more complex than it is for most products. The
coprocessor requires special features for secure software
update so that cryptographic functions can be changed

1 In S/390 and later zSeries*, the 4758 is called the PCI cryptographic coprocessor,
or PCICC.

T. W. ARNOLD AND L. P. VAN DOORN IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

476

with no exposure to Trojan horses or other security
attacks.

Performance
Today�s systems require high-performance cryptographic
functions. Traditional applications, such as automatic
teller machine personal information number (ATM PIN)
processing have always required high-performance
symmetric-key cryptography, but this is even more
important today as customers aggregate applications onto
a smaller number of higher-performance servers. Each
server must have the ability to process more transactions
per second than with earlier generations. Public-key
cryptographic functions such as RSA (named after its
inventors, R. Rivest, A. Shamir, and L. Adleman) [9], are
critical to SSL-based transactions and to digital signature
applications. Use of these functions has dramatically
increased in recent years, with a corresponding rise in
throughput requirements. These algorithms rely on
complex mathematical operations that use very large
numbers, and performing them in software on the main
processors of the server can easily consume most of the
CPU capacity, leaving little for the application itself. Thus
rises the need to implement the cryptographic functions
in a coprocessor, which can execute these functions
independently while the server CPU is free to perform
other functions.

Satisfying two goals: security and acceleration
There are two fundamentally different goals for a
cryptographic coprocessor. One is to simply accelerate
the complex cryptographic algorithms in order to increase
system throughput beyond that possible when the
algorithms are executed in server software. In this
environment, there is no need for the coprocessor to
provide any special level of security beyond what existed
when the processing was done without the coprocessor.

The second environment has security as its primary
goal, although high performance is also very important.
Banking systems and certificate authorities are examples
of this environment. It is essential that all cryptographic
keys be securely protected from disclosure, modification,
and misuse. It is equally important to guarantee that there
can be no tampering with the operation of the security
functions executed by the coprocessor. These requirements
dictate a physically and logically secure processing
environment that is protected against tampering,
eavesdropping, and other attacks.

Multiplatform support
A given class of application is not necessarily tied to a
single server platform. For example, ATM PIN processing
may be done on a zSeries mainframe, a pSeries* AIX*
server, or an iSeries* system. In fact, in some

environments, the same application may be implemented
on two or more platforms. We have learned that many
customers place a high value on compatible cryptographic
functions across all of their platforms, so that they can
design and implement an application one time, then port
it to other platforms where they want it to run.

For many applications, this means having an industry-
standard cryptographic API, such as PKCS#11 [10], on
each platform. For more specialized applications, such as
those in banking and finance, however, a specialized API,
such as the IBM CCA, may be required. (See the section
on the Common Cryptographic Architecture for a
description of CCA in the PCIXCC coprocessor.)

Export control
For a cryptographic coprocessor to be valuable, one must
be able to obtain it for a server. This may seem obvious,
but cryptography has a stormy history when it comes to
export control. For many years, cryptographic coprocessors
were classified by the United States government as
military weapons, and export was highly restricted and
tightly regulated. It was very difficult to develop such a
product in the United States and sell it to customers in
other countries. IBM learned that it is essential to design
all cryptographic products with provisions for complying
with export regulations.

In recent years, export controls on cryptographic
products have been almost entirely removed, and the
need for special export control features has been greatly
reduced. Government rules can change at any time,
however, and it is still important to design all products so
that they can accommodate new regulations that may be
introduced.

Security certifications
Cryptography and security are difficult areas, requiring
specialized knowledge. Many customers realize that they
do not have this depth of knowledge and they wisely
choose to trust recognized experts to help them select
products that are well designed and adequately meet the
security needs of their application. The easiest way to do
this is to choose a product that has been certified to an
appropriate security standard by an independent expert
organization. If the standard is well known and has been
scrutinized by experts in the field, certification under that
standard provides a high degree of assurance that the
product will offer good security in the area covered by
the standard.

One of the most important contemporary standards
related to cryptographic coprocessors is NIST FIPS 140, a
standard for evaluating the physical and logical security of
a hardware- or software-based cryptographic module. The
hardware and low-level firmware of the current generation
of IBM cryptographic coprocessors have been certified at

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. W. ARNOLD AND L. P. VAN DOORN

477

the highest level of FIPS 140-1, and the new coprocessor
has been designed to conform to the newer version, FIPS
140-2.

The PCIX cryptographic coprocessor
The following sections describe the new PCIX
cryptographic coprocessor (PCIXCC) (Figure 1), which
IBM designed to replace its current cryptographic
coprocessors. The PCIXCC builds on the technology used
in those earlier products and on the lessons described
above that we learned with those products.

Goals of the PCIX cryptographic coprocessor design
The design goals for the PCIXCC were based on known
customer requirements, experience with earlier products,
and projections of future customer needs. These goals are
summarized below.

1. The coprocessor should have the capability to replace
all cryptographic features currently available on all of
the IBM server platforms. It must provide the features
of both a high-speed cryptographic accelerator and
a high-security coprocessor, which were previously
available only in separate products. While IBM may
not deploy the PCIXCC on all of its servers, the
goal of the coprocessor design was to support that
possibility and to have the necessary features. The
products that the PCIXCC could replace include the
following:

● 4758 PCI cryptographic coprocessor. The 4758
is available today in forms for all IBM server
platforms: on the zSeries as the PCICC feature, on
the iSeries as feature 4801 or 4802, on the pSeries

as feature 4963, and on the xSeries as machine
type 4758. It provides highly secure cryptography
supporting the CCA API on all platforms and
PKCS#11 on xSeries and pSeries systems.

● zSeries Cryptographic Coprocessor Feature (CCF).
The CCF is a single-chip cryptographic coprocessor
embedded in all IBM CMOS mainframe systems.

● IBM cryptographic accelerator card. This PCI card
provides acceleration for cryptographic operations,
especially for the RSA algorithm that is critical to
SSL performance. It is supported on zSeries, iSeries,
and pSeries servers.

2. The coprocessor must be highly flexible and
programmable so that features can be added
throughout the product lifetime as standards and
customer requirements evolve. A programming toolkit
should provide the ability for special functions to
be added for specific customers, with those added
functions executing with the same security as the
standard functions supplied by IBM. There must be
a security architecture that ensures that the card is
trusted and has not been modified, and that any
software updates are trusted.

3. Both the physical packaging and the low-level software
must be designed to comply with FIPS 140-2 at Level
4, the highest security level.

4. The coprocessor must be in the form of a PCI-X card,
providing a high-speed connection in any of the IBM
server systems.

5. The card must provide high-performance
implementations of algorithms that include DES and
Triple-DES (TDES) encryption [11], DES and TDES
Message Authentication Codes (MACs) [12, 13], NIST
Advanced Encryption Standard (AES) [14], RSA and
other public-key algorithms, and the SHA-1 [15] and
MD5 [16] hashing algorithms. In addition, it must
provide a cryptographically strong hardware-based
random number generator.

6. High-performance host-to-card communications is
difficult to achieve and can significantly degrade
overall coprocessor performance when the majority of
requests include only a small amount of data. This is
because the communications overhead required for
each transaction to the card can easily be larger than
the time it takes the card to perform the requested
operation. It is important that the PCIXCC design
include innovative high-speed paths to alleviate this
problem and improve overall coprocessor throughput.

7. As a secure programmable coprocessor, internal
software is used to orchestrate the cryptographic
operations and to handle parameter checking, data
formatting, and part of the communications control. It
is essential that the software running inside the card

PCIXCC card.

Figure 1

T. W. ARNOLD AND L. P. VAN DOORN IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

478

execute as quickly as possible. The secure packaging
limits total power dissipation, so the embedded
microprocessor and related components must be
selected carefully to maximize performance while
minimizing power use.

8. The implementation should reuse as much as possible
from earlier products, while replacing those parts that
must be changed to meet the new goals, such as
higher performance.

9. The programming API at the host interface should
maintain compatibility with previous coprocessors so
that host application programs do not have to be
modified.

10. The coprocessor should have high reliability and built-
in error checking for both hardware and software,
consistent with the reliability of other components
of IBM servers.

Overview of the design
This section provides a brief overview of the PCIXCC
card hardware and software. Subsequent sections treat
each area in greater detail.

Hardware overview
The PCIXCC hardware is implemented in the form of a
PCI-X adapter card, with a secure module containing all
security-related components. The module is designed to
meet the stringent security requirements of the FIPS 140-2
standard at Level 4. The internal components include a
processor subsystem consisting of an IBM PowerPC*
405GPr microprocessor operating at 266 MHz, with
64 MB of dynamic random-access memory (DRAM),
16 MB of flash-erasable programmable read-only memory
(flash EPROM) for persistent data storage, and 128 KB of
static complementary metal oxide semiconductor (CMOS)
RAM backed up with battery power when the card is
powered off. The microprocessor serves as the primary
controller of card operations. It orchestrates operation of
the special-purpose hardware in the card and implements
communications with the host and the cryptographic API
functions that comprise the external interface from host
application programs to the card.

Other critical hardware components include an IBM-
developed custom cryptographic chip which internally we
call Otello, a hardware-based cryptographic-quality random-
number source, and a field-programmable gate array
(FPGA) code-named Rigoletto which implements all of
the interface and “glue” logic, including a sophisticated
hardware assist to support high-performance
communications to the card and between the PowerPC
processor and cryptographic engines inside the card. The
secure packaging technology is designed to detect or
prevent all known physical attacks that might allow

determined adversaries to extract secret data or tamper
with the execution of critical operations within the card.

The hardware is designed with extensive integrated
error checking to ensure that no hardware failures result
in undetected errors in customer data. Otello includes
hardware redundancy in all cryptographic algorithms so
that any errors will be detected and will prevent erroneous
results. Both Otello and Rigoletto feature error checking
on all data paths and other logic. The 64-MB DRAM uses
error-correcting logic to automatically correct any single-
bit errors and to stop on multibit errors. Software includes
additional error checking to verify the health of the
PowerPC processor itself and to perform additional
memory checking.

Software overview
The software is implemented as a layered design with a
bootstrap loader at the lowest level and an application
program at the highest level in the hierarchy. The card
uses an embedded Linux** operating system that provides
a subset of the features normally found in desktop or
server Linux systems. All software except the bootstrap
loader can be securely upgraded in the field, and each
layer can be replaced individually. The application
program at the top of the hierarchy implements the IBM
CCA cryptographic API, which provides the functions
accessible to application programs and administrative
software running in the host system.

Details of the hardware design
This section provides information about the hardware
design of the PCIXCC card and the special-purpose logic
that gives it some of its unique characteristics.

Card overall design
The PCIXCC is a 3.3-V PCI-X bus adapter card with
all security-related components encased in a tamper-
responding security module (Figure 1). Figure 2 is a block
diagram of the card that includes the components in the
secure module and those attached to the mother card.

Processor subsystem
The control processor inside the PCIXCC secure module
is an IBM PowerPC 405GPr microprocessor running at a
clock speed of 266 MHz. Integrated peripheral devices on
the processor chip include both Ethernet and serial port
interfaces, which are attached to standard connectors at
the back edge of the card. Memory includes 64 MB of
error-correcting (ECC) DRAM, 16 MB of flash EPROM,
and 128 KB of static RAM powered by a battery when the
card is powered off. In addition, a real-time clock module
maintains the date and time for use by the PowerPC
microprocessor. An internal PCI bus is used to

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. W. ARNOLD AND L. P. VAN DOORN

479

interconnect the processor and other hardware devices on
the card.

Tamper detection
The secure module on the PCIXCC card is designed with
industry-leading tamper-detection features. The security-
related electronic components are wrapped in a flexible
mesh with narrow, embedded, overlapping conductive lines
that prevent any physical intrusion by drilling, mechanical
abrasion, chemical etching, or other means. If the
conductive lines are damaged, it is sensed by circuits
inside the module, and all sensitive data is immediately
destroyed. This is done by zeroizing the battery-backed
static RAM; all sensitive data is stored either directly in
the static RAM or in flash memory and encrypted under a
168-bit TDES key that is itself stored in that static RAM.
If that key is destroyed, all encrypted data in the flash
memory is rendered unusable. Other special circuits sense
attacks that can cause imprinting in the static RAM.
Imprinting is a process that can permanently burn data
into the RAM, so that the same data appears each time
the RAM chip is powered on. Different data can be

written to the chip while it is operating, but the next time
it is powered on, the originally imprinted data appears
again as the initial memory content. Imprinting can
be caused by exposing the memory to either very low
temperatures or X-rays, and the tamper circuitry detects
either of these and zeroizes the memory before imprinting
can occur. Finally, there are attacks that are driven by
manipulating the power-supply voltages to the card, and
these conditions are also detected to prevent the attacks
from succeeding.

The security architecture of the hardware complements
the secure code loading design, and the combination of
the two provides the features that support FIPS 140-2
Level 4 security. The trust model demands that higher
layers in the software hierarchy must not be able to
modify operation of the lower layers or tamper with
security-related data owned by those lower layers. To
accomplish this, the card uses a separate 8-bit security
microcontroller that keeps track of the security state of
the card and blocks access by higher layers to the memory
they must not be allowed to access. This independent
processor is required, since code of any trust level running
in the PowerPC processor would otherwise be able to
access any memory region regardless of the trust level
associated with its contents.

Otello cryptographic engine
Otello is an IBM-designed custom chip that provides fast
hardware implementation of the essential cryptographic
algorithms used by the PCIXCC card. The Otello chip is
divided into two cryptographic algorithm sections. The
symmetric-key cryptography and hashing unit 2 (SKCH)
provides the DES, TDES, and AES symmetric encryption
algorithms and the SHA-1 and MD5 secure hashing
algorithms. In addition to data encryption, the DES
implementation includes both single-DES and TDES MAC
support, conforming to ANSI X9.9 and ANSI X9.19. The
public-key unit provides modular math functions that are
used to provide algorithms such as RSA. In addition,
Otello contains an add-on interface, an interface to the
PowerPC microprocessor, an interface to communicate
with the Atmel AVR** security microcontroller, and an
interface to the hardware random-number source. Table 1
shows performance on the available cryptographic
algorithms.

Rigoletto field-programmable gate array
The Rigoletto FPGA contains the logic for all interfaces
between the host server, the PowerPC microprocessor, and

2 Symmetric-key cryptographic algorithms are those that use an identical key for
encrypting data and for decrypting that same data. A cryptographic hash function
generates a fixed-length fingerprint, called the hash, from a variable-length input
block. It should be infeasible to learn anything about the input block from the
hash, and it should be infeasible to find a second set of input data that produces
the same hash value.

PCIXCC hardware.

Figure 2

Secure crypto module

PCI-X base

card

Interconnect

Tamper-

detection

circuitry

PowerPC

405GPr

microprocessor

Rigoletto

FPGA

Otello

cryptographic

processor

AVR

micro-

controller

Random

number

generator

Flash

EPROMSDRAM

PCI-X-to-PCI-X

bridge

Batteries

dc/dc

10/100T

Ethernet

controller

RS232

serial

Port

Port

PCI-X bus edge connector

Power

Real-time

clock

(RTC)

Battery-

backed RAM

(BBRAM)

T. W. ARNOLD AND L. P. VAN DOORN IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

480

the Otello cryptographic chip. Since both the host server
and the PowerPC microprocessor interface directly with
the FPGA in order to talk to each other or to request
cryptographic services, the FPGA is the key component
for all internal and external programming interfaces.

The Rigoletto FPGA provides two fundamentally
different communication paths for host-to-card
transactions—normal path and fast path.

Normal path
In this mode, host requests are transferred via scatter-
gather direct memory access (DMA) directly into DRAM
memory in the card. Multiple requests can be buffered in
memory, and so are already in the card when resources
are available to process them. Once a request is in the
card, software in the PowerPC microprocessor determines
what function has been requested and executes that
function with a combination of PowerPC software and
calls to the on-card hardware. This method provides good
performance and can—with the flexibility of this software-
based approach—implement any required functions.

Fast path
The fast path is a novel design that provides very high
performance for public-key cryptographic functions. 3 It
gives the host server a direct hardware path to the Otello
public-key cryptographic engine so that data does not have
to stop in PowerPC memory and no software is involved.
Logic in the Rigoletto FPGA arbitrates requests to the
Otello chip so that normal-path and fast-path operations
can be intermixed with no interference. The fast-path
design supports operations using cleartext RSA keys, or
using wrapped RSA keys that are encrypted under a
TDES fast-path master key securely stored inside the
tamper-resistant module.

Rigoletto includes sophisticated logic and first-in
first-out (FIFO) buffers to control and accelerate
communications between the host and card and between
the PowerPC microprocessor and the Otello cryptographic
chip. The PowerPC microprocessor has very little to do in
software. Special-purpose control logic manages almost all
aspects of the scatter-gather DMA transfers. This results
in communications throughput that is more than an order
of magnitude greater than that of the earlier 4758 card.

Random-number generator
The card includes two cryptographic-quality hardware
random-number generators. The entropy is obtained from
electrical noise from a semiconductor junction. Each of
the two random-number sources provides random bits
at a rate of 128 Kb/s.

Details of the software design
The software that runs on the PowerPC 405GPr in the
coprocessor is divided into four separate components
(Figure 3):

● Segment 0 contains POST (power-on self-test) 0 and
Miniboot 0, stored in a region of flash EPROM that is
unalterable once the card leaves the factory. POST 0
contains the small, low-level hardware self-test and setup.
Miniboot 0 is the lowest-level software for control of
loading software into segments 1, 2, and 3.

3 The Otello cryptographic chip is designed to support symmetric and hashing
operations in fast path, in addition to public key operations. The logic currently
implemented in the Rigoletto FPGA, however, does not provide a path from the
host to those Otello functions. This could be added in the future with different
FPGA programming.

Table 1 Crypto-chip performance.

Function Performance
(MB/s)

DES (56-bit key) 200
TDES (168-bit key) 67
AES (128-bit key) 185
AES (192-bit key) 156
AES (256-bit key) 136
SHA-1 198
MD5 239
RSA (1024-bit CRT key) 3300 operations per second

Software layers of the PCIXCC.

Figure 3

Segment 3

(in flash,

replaceable)

POST 0

Miniboot 0

POST 1

Miniboot 1

Operating system (Linux)

and device drivers

CCA application

or other applications

Digital certificate

Segment 2

(in flash,

replaceable)

Segment 1

(in flash,

replaceable)

Segment 0

(in ROM,

permanent)

Digital certificate

Digital certificate

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. W. ARNOLD AND L. P. VAN DOORN

481

● Segment 1 contains POST 1 and Miniboot 1. These are
extensions to the POST and Miniboot in Segment 0, but
have the important distinction that they can be securely
reloaded after the card has been manufactured. Thus,
Segment 0 holds the minimum required POST and
Miniboot functions, while Segment 1 contains the
majority. This is done to minimize the chances that a
critical error will occur in code that cannot be updated
in the field.

● Segment 2 contains the operating system and device
drivers. The PCIXCC card uses an open-source
embedded Linux operating system. Special device drivers
have been written to allow the operating system and
application program to use the unique hardware inside
the card.

● Segment 3 contains the application program that runs on
the PowerPC 405GPr to give the card the cryptographic
API functions seen by host programs. In the current
PCIXCC card, this application program implements the
functions of the IBM CCA API. However, the card is
designed to allow future developers to write other
application programs to execute in the card. These could
replace CCA or run concurrently with it, allowing the
card to provide multiple sets of API functions to host
application programs.

POST and Miniboot
The purpose of POST is to test and initialize all hardware
in the coprocessor card, including the PowerPC 405GPr
processor, the cryptographic engines, the communications
interfaces, and all other logic. It must be written with the
assumption that any hardware in the card may be faulty,
and it must prevent use of the card if there are serious
faults. It must report problems that are found, unless
the problems themselves make reporting impossible.

The PCIXCC POST executes a sequence of tests, each
identified by a checkpoint. The checkpoint is a numeric
value that indicates which test is underway at any given
time. If POST halts due to a failure, the checkpoint
number is available in an interface register that can be
read by the host computer system. This allows the host
to identify the test that has failed.

The purpose of Miniboot is to control the secure
loading of new software into Segments 1, 2, and 3. Since a
large portion of Miniboot resides in Segment 1, this means
that it has the ability to reload itself; this is done in a
failsafe manner to ensure that an operational copy will
always be present in the coprocessor card. The Miniboot
code-loading architecture is a fundamental component
of the PCIXCC FIPS 140 Level 4 design; it provides
assurance that any software executing in the card has not
been tampered with, and that it was created by IBM or
someone approved by IBM to do so. Each segment has
control over what software can be loaded into the next

segment, and all segments are protected with digital
signatures that can be verified back to a root key securely
managed by IBM. In addition, Miniboot provides a facility
called outbound authentication (OA), which can be used by
applications inside or outside the card in order to verify
at any time that the card is a genuine, untampered IBM
cryptographic coprocessor. This is a valuable feature,
because it makes it possible, even remotely, to verify that
a coprocessor is not an insecure hardware or software
replica of the PCIXCC and that the PCIXCC has not
been modified with the addition of Trojan horses or
other changes that would violate its security.

Linux operating system and device drivers
The PCIXCC cryptographic coprocessor was conceived as
an improved version of its predecessor, the 4758, with the
goal of minimizing software changes. The decision to
replace the embedded processor, which is based on the
Intel486** architecture, with an embedded PowerPC
405GPr had some major consequences, however, especially
for the operating system.

The 4758 embedded operating system is CP/Q, a
message-passing-based microkernel developed by IBM.
Using CP/Q in the PCIXCC would have made it easier
for developers to port the existing 4758 firmware, but we
eventually decided against it for several reasons. First,
CP/Q was a home-grown embedded operating system for
which development had stopped many years ago. As
the only remaining CP/Q user, it was up to the 4758
development team to maintain the O/S, which consumed
development resources that could be better used
elsewhere. Second, there was no version of CP/Q for the
PowerPC 405 family, and the porting process would have
been long and expensive. Finally, there were performance
problems with the CP/Q microkernel-based architecture.
IBM Research had already experimented with Linux on
the 4758 and, partly on this basis, we decided to use Linux
inside the PCIXCC. An additional motivation for this was
that Linux has a large existing user base, including a very
active embedded development community. For example,
the Linux kernel comes with good flash memory support,
and most significantly, it had an existing and actively
maintained port for the embedded PowerPC 405. By
adopting Linux as the card O/S, the PCIXCC development
team could focus more of its energy on the unique
PCIXCC components.

The length of time available to port existing 4758
CCA firmware to the new environment turned out to be
relatively short. To make it as easy as possible, we tried
to mimic as much of the Linux run-time environment
available on ordinary workstations as made sense in a
small embedded environment. This included shared library
support, C and C�� run-time support, thread support,
and software floating-point support.

T. W. ARNOLD AND L. P. VAN DOORN IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

482

Initially we considered using one of the available
commercial embedded Linux distributions, but we quickly
dismissed that option. These distributions tend to focus
on much larger systems and come with a large number of
base components, such as sed and awk, which are overkill
for a small embedded system. Instead, we created our own
package that consisted of a bootstrap loader, a standard
Linux kernel, a small set of utility programs that initialize
the system and drivers, and a minimal set of shared
libraries to provide C and C�� run-time support.

We used open-source components as much as we could.
The bootstrap loader is a slightly modified version of
ppcboot, and the kernel is a slightly modified version of
the standard Linux kernel. The minor modifications add
support for PowerPC microprocessor differences and card-
specific peripherals that are used during system bringup,
such as the clock. All other device drivers for crypto and
communication peripherals are loaded dynamically into
the kernel once the kernel is up and running. The reason
for using dynamically loaded device drivers is that they
provide a strong separation between the open-source
license used by the kernel and the license under which the
device drivers are available. This separation was useful
when we were still debating the appropriate licensing
scheme under which to release the software. In the end,
we decided to provide all device driver modules under the
same license as the Linux kernel, the GNU General Public
License (GPL).

CCA cryptographic application program
The following sections describe the CCA architecture and
the CCA application program that runs in Segment 3 on
the PCIXCC cryptographic coprocessor.

The Common Cryptographic Architecture
The Common Cryptographic Architecture (CCA) API is
the programming interface used by host application
programs to access the PCIXCC card to perform
cryptographic or administrative functions. CCA provides
both generic cryptographic functions and a rich set of
functions specifically designed to support the unique needs
of the banking and finance industries.

CCA is a hardware-based cryptographic architecture.
It is hardware-based in the sense that it must be
implemented in a secure environment, where there is
protection against disclosure or modification of secret
CCA data and protection against modification of the
execution of the CCA functions themselves. CCA must
operate as a black box in which the inputs, outputs, and
operations are well-defined in an external API, but where
the data and functions within the box are protected
against outside entities. From this perspective, the
PCIXCC platform is ideal because its design is based on
FIPS 140-2 Level 4 requirements. The secure module on

the card provides precisely the kind of protection needed
to secure an API such as CCA.

One of the security principles of CCA is that no
application keys can ever appear in cleartext form outside
the secure module. It is possible for a customer to load
initial keys in cleartext form, but once those keys have
been imported into the module, it is impossible to reveal
them in cleartext form any more. Once keys are in the
CCA environment, the API is designed to guarantee that
they will always be securely encrypted. The preferred way
to generate keys is to let the CCA module generate them
so that they leave the module already in encrypted form,
but this is not always practical when keys must be
interchanged with non-CCA systems. To accommodate
both this and legacy key-entry paradigms, CCA also
provides functions to load DES keys in multiple cleartext
key parts. These functions also provide dual control to
ensure that different people are responsible for each of
the separate key parts.

In general, under CCA, all application keys are
encrypted under a TDES master key held securely inside
the protected module. The keys can then be stored outside
the module without having to be concerned about their
security; they cannot be attacked because the master key
used to encrypt them is itself secure inside the tamper-
protected module and will be zeroized if there is any
attempted attack. This allows the customer to store a
number of application keys, with the number limited only
by storage on hard disk or other media. For convenience,
all CCA host application software provides built-in key
storage databases that are managed by CCA itself. The
customer can refer to keys by an identifying string called a
key label, and CCA will use the label to locate the actual
encrypted key token and send that token to the PCIXCC
card for use in the requested CCA function. Alternatively,
the customer can use his own database or other software
to store and manage the encrypted key tokens.

There is one exception to the application keys stored
outside the secure module: CCA supports retained RSA
keys, in which the RSA key pair is generated inside the
secure module, and only the public key is ever allowed to
leave the secure environment. The private key remains
inside the module and is never allowed to leave in any
form. This is designed to meet the strict demands of some
standards, which require assurance that the private key
can exist only in a single cryptographic module. By doing
so, non-repudiation is greatly strengthened; if a private
key can exist only in one cryptographic device, it provides
assurance that any digital signature computed using that
private key can have originated only at the system in
which that device is installed. In the PCIXCC, retained
RSA private keys are stored in the flash memory inside
the secure module. Like all CCA data stored in that
memory, they are securely encrypted under a TDES key

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. W. ARNOLD AND L. P. VAN DOORN

483

that is destroyed if there is any attempt to tamper with the
device.

For DES keys, CCA enforces strong separation of key
usage with control vectors (CVs)— bit strings that are
cryptographically bound to the key itself so that they
cannot be removed or modified without rendering the
key unusable. The bits in the control vector specify the
possible uses of the key in great detail. This prevents the
many attacks that are otherwise possible by using a key
for an inappropriate function. The control vectors serve
a number of purposes, including the following:

● They enable or disable the use of the key for specific
cryptographic functions, such as

• Enciphering or deciphering data.
• Generating a message authentication code (MAC).
• Verifying a MAC.
• Importing a key from another cryptographic system.
• Exporting a key to another cryptographic system.
• Processing financial PIN transactions.
• Processing Europay**-MasterCard**-Visa** (EMV)

smart-card-based transactions [17].
● They are used to define the length of the key and its

position for multilength DES keys. For example, the
control vector may define a value as one of the
following:

• A single-length (56-bit) DES key.
• The left half of a double-length (112-bit) DES key.
• The right half of a double-length (112-bit) DES

key.● They contain a number of fields to protect against
specific cryptographic attacks.

CCA systems are designed to be highly resistant to
insider attacks, even by system programmers or the design
team that developed the hardware and software. This is
facilitated by the consistent use of strong key separation
and well-architected discrete cryptographic functions.
Many complex operations are implemented in CCA
as atomic functions to ensure that no unprotected
intermediate results will ever appear outside the secure
module. For banking and finance applications and others
that require strong assurances of security, these features
are of paramount importance. These CCA design
principles can be contrasted with pure software
implementations of cryptographic functions or with
cryptographic accelerators that provide only the raw
encryption algorithms. Such implementations are
extremely valuable in applications such as SSL that
have short-lived data and encryption keys, but they
cannot provide the kind of security required for ATM
PIN processing, digital signatures, or many other
functions with strong security requirements defined
by the application itself, by standards, or by legal
documents.

Today�s CCA implementation includes functions in the
following broad categories:

● DES and TDES encryption.
● MAC functions that support ANSI standards X9.9 and

X9.19.
● TDES-based key management using control vectors.
● RSA key generation.
● RSA-based digital signatures.
● RSA-based key management of DES keys.
● SET** for electronic commerce functions.
● PIN processing functions.
● MD5 and SHA-1 hashing.
● Processing Europay-MasterCard-Visa (EMV) smart-

card-based transactions.
● An integrated role-based access control system to

securely control which CCA functions are authorized
for different users.

The above are implemented in the form of roughly
75 separate API functions, many of which have a wide
variety of processing options.

The CCA implementation in the PCIXCC coprocessor
CCA is implemented in the PCIXCC in software that runs
in Segment 3 (see Figure 3). It is implemented as an
application program under the embedded Linux operating
system. The CCA software calls special Linux device
drivers in order to access the cryptographic hardware and
the communications interface that permits it to interact
with application programs running on the host computer
system.

The preceding-generation IBM z900 servers have
CCA implemented with a combination of two hardware
coprocessors. Every machine has a standard single-chip
CCA processor called the Cryptographic Coprocessor
Feature (CCF). CCF provides a limited subset of
CCA functions, but is extremely fast for symmetric
cryptographic algorithms. In addition to the CCF,
customers can purchase an optional feature called
PCICC 4, which is the direct predecessor of the PCIXCC.
The PCICC feature contains the 4758 PCI cryptographic
coprocessor card with a special version of its CCA
software tailored for the specific needs of the zSeries
platform. While its performance on symmetric algorithms
is much lower than the CCF, the PCICC has better RSA
performance and a much broader set of CCA functions,
and its programmability allows it to support new
requirements and special custom features that arise over
time. In addition to CCA, the z900 offers a cryptographic
accelerator feature called the PCI Cryptographic

4 The initialization PCICC stands for PCI cryptographic coprocessor, as opposed to
the new PCIXCC, which is the PCI-X cryptographic coprocessor. PCI and PCI-X
are the card interface bus technologies used on the two cards.

T. W. ARNOLD AND L. P. VAN DOORN IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

484

Accelerator (PCICA). The PCICA is strictly an accelerator
to speed up cryptographic algorithms. It does not have
any security to protect keys or data, and it does not
support CCA.

With the PCIXCC, we have a single coprocessor card
that can replace the CCF, the PCICC, and the PCICA
features in the zSeries systems. One card contains all
of the necessary cryptographic functions, performance,
programmability, and tamper resistance for these systems.
Similarly, the PCIXCC card has the capability to replace
both the 4758 card (used in iSeries, pSeries, and xSeries
servers) and the cryptographic accelerator card (used in
iSeries and pSeries systems).

CCA is structured as a multithreaded application in
which requests from the host are dispatched to one of
several worker threads. This architecture allows the I/O
(crypto and communication) to be overlapped by
computations and provide a traditional blocking
programming model. For example, some threads may
be suspended waiting for RSA operations to complete,
while others may be communicating with the host.

Toolkit and debugger
Like the PCICC and 4758, the new PCIXCC coprocessor
is designed to support custom programming, a feature that
makes it possible to add special features users might need
or request. The CCA API can be extended with new
functions using the user-defined extensions (UDX) toolkit.
The toolkit provides the necessary tools to write and
debug CCA extensions that execute inside the secure
module on the card with the same industry-leading
security as the standard CCA functions provided by IBM.
It also provides tools to add new functions to the host
API software so that they can be called by application
programs.

Performance
Preliminary performance measurements show that the
PCIXCC meets or exceeds all of its performance goals.
Its performance compared with that of the predecessor
PCICC card is excellent, and the card meets all of the
goals for replacement of the PCICC, PCICA, and CCF
in zSeries servers.

Table 2 shows performance for the PCIXCC in a
z990 system compared with a PCICC in the z900. Each
machine had a single coprocessor card, but note that
multiple cards can be used, and performance scales
approximately linearly with the number of cards. All
tests were performed using the normal path mode of
communications. No measurements are shown for the
fast path mode.

The results shown in Table 2 were measured from real
host server application programs running on top of the
host operating system and the CCA API software. These

operations all used fully secured keys, and complex
operations such as PIN translate performed the entire
function as an atomic operation inside the secure module.
No cleartext keys or other sensitive cleartext information
appear outside the secure boundary of the coprocessor.

Future possibilities
The PCIXCC is an extremely flexible, high-performance,
highly reliable cryptographic coprocessor. Today, it is
available only in IBM zSeries servers using the CCA API,
but the design makes it easy to consider a variety of other
systems and applications in the future. 5 Possibilities
include the following areas:

● The coprocessor card could be supported on other IBM
platforms, such as iSeries, pSeries, or xSeries.

● In addition to CCA, other APIs could be supported,
such as PKCS#11. Multiple APIs could be supported
in the card simultaneously.

● The card could be offered through original equipment
manufacturer (OEM) channels so that other companies
could sell it as their product. They could use the
development toolkit to differentiate their product
version from IBM versions of the card, but they would
still have the benefit of the hardware design, reliability,
and the embedded Linux operating system.

5 None of these possibilities is in any way a commitment by IBM to develop or
offer such a product or feature.

Table 2 Performance comparison of the PCIXCC in a z990
system and PCICC in the z900 system.

Operation Performance
(operations per second)

Ratio

PCICC (4758) PCIXCC

Generate 1024-bit RSA
digital signature

104 1172 11.3

Generate 2048-bit RSA
digital signature

42 458 10.9

Encipher 1024-byte blocks
of data (single-DES)

†
166 1183 7.1

Encipher 1024-byte blocks
of data (TDES)

168 1145 6.8

Generate RSA key, 1024-bit
CRT† † format

0.28 1.8 6.4

Generate wrapped DES key 125 1007 8.1
Export (wrap) DES key 190 1214 6.4
PIN translate 106 1075 10.1
PIN encrypt 147 1488 10.1
Derive diversified key 131 1048 8.0

† Note that the DES and Triple-DES numbers are measured on an IBM xSeries
server running Linux, and not on the z990 and z900 systems. This is because no
PCICC data is available for these functions from the zSeries systems.
† † Chinese remainder theorem.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. W. ARNOLD AND L. P. VAN DOORN

485

● The card was designed with an integrated Ethernet port
so that it can be used as a controlled network interface.
The combination of the Ethernet port, the cryptographic
hardware, the programmability, and the tamper-
responsive envelope make the card an attractive solution
to implement secure network protocols in potentially
hostile environments.

The fact that the card is fully programmable with complete
security for loading and executing code opens almost
limitless possibilities for its use.

Concluding remarks
In this paper we have described the new IBM PCI-X
Cryptographic Coprocessor, a flexible, high-performance
cryptographic processor for server systems. The PCIXCC
is now available as a feature on IBM z990 servers.

We have described the overall design of the PCIXCC
and contrasted it with its predecessors, particularly the
4758 card, also known as the PCICC in zSeries systems.
The lessons we learned with the 4758 contributed
significantly to the innovative design of the PCIXCC,
where new approaches resulted in a typical performance
improvement of 10� greater than the 4758. The new
design provides a high degree of upward compatibility
with predecessor products so that users benefit from the
improved performance and reliability without having to
change their application programs.

The flexibility and secure design of the PCIXCC make
it an ideal candidate for servers requiring the highest
possible level of security for their keys and cryptographic
operations, while still obtaining very high levels of
performance in real-world applications.

*Trademark or registered trademark of International Business
Machines Corporation.

**Trademark or service mark of Intel Corporation or its
subsidiaries, Linus Torvalds, Atmel Corporation, Europay
International, MasterCard International Incorporated, Visa
International, or SET Secure Electronic Transaction LLC in
the United States and/or other countries.

References
1. H. Feistel, “Cryptography and Computer Privacy,”

Scientific American 228, No. 5, 15–23 (May 1973).
2. D. G. Abraham, G. M. Dolan, G. P. Double, and J. V.

Stevens, “Transaction Security System,” IBM Syst. J. 30,
No. 2, 206 –229 (1991).

3. D. B. Johnson and G. M. Dolan, “Transaction Security
System Extensions to the Common Cryptographic
Architecture,” IBM Syst. J. 30, No. 2, 230 –243 (1991).

4. Security Requirements for Cryptographic Modules, Federal
Information Processing Standard 140-2, National Institute
of Standards and Technology, Washington, DC, May 25,
2001.

5. R. M. Smith, Sr., and P. C. Yeh, “Integrated
Cryptographic Facility of the Enterprise Systems

Architecture/390: Design Considerations,” IBM J. Res.
& Dev. 36, No. 4, 683– 694 (July 1992).

6. IBM Corporation, IBM PCI Cryptographic Coprocessor,
CCA Basic Services Reference and Guide, Release 2.41 for
IBM 4758 Models 002 and 023; see http://www-3.ibm.com/
security/cryptocards/html/library.shtml.

7. S. W. Smith and S. Weingart, “Building a High-
Performance, Programmable Secure Coprocessor,”
Computer Networks (Special Issue on Computer Network
Security) 31, 831– 860 (April 1999).

8. A. Freier, P. Karlton, and P. Kocher, “The SSL Protocol,
Version 3.0,” Transport Layer Security Working Group,
November 1996; see http://wp.netscape.com/eng/ssl3/
draft302.txt/.

9. R. L. Rivest, A. Shamir, and L. Adleman, “A Method
for Obtaining Digital Signatures and Public-Key
Cryptosystems,” Commun. ACM 21, No. 2, 120 –126
(February 1978).

10. Cryptographic Token Interface Standard, PKCS #11 v2.11,
RSA Laboratories, November 2001; see http://
www.rsasecurity.com/rsalabs/pkcs/pkcs-11/index.html.

11. Data Encryption Standard (DES), Federal Information
Processing Standard 46-3, National Institute of Standards
and Technology, Washington, DC, October 1999.

12. Financial Institution Message Authentication (Wholesale),
American National Standard X9.9, American Banker�s
Association, May 1996.

13. Financial Institution Retail Message Authentication,
American National Standard X9.19, American Banker�s
Association, May 1996.

14. Advanced Encryption Standard (AES), Federal Information
Processing Standard 197, National Institute of Standards
and Technology, Washington, DC, November 2001; see
http://csrc.nist.gov/CryptoToolkit/aes/.

15. Secure Hash Standard, Federal Information Processing
Standard 180-1, National Institute of Standards and
Technology, Washington, DC, April, 1995; see http://
www.itl.nist.gov/fipspubs/fip80-1.htm.

16. R. Rivest, “The MD5 Message-Digest Algorithm,” MIT
Laboratory for Computer Science and RSA Data Security,
Inc., April 1992; see http://www.ietf.org/rfc/rfc1321.txt/.

17. Europay, MasterCard, Visa information and specifications;
see http://www.emvco.com/.

Received September 22, 2003; accepted for publication

T. W. ARNOLD AND L. P. VAN DOORN IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004

486

December 3, 2003; Internet publication April 6, 2004

Todd W. Arnold IBM Systems and Technology
Group, 8501 IBM Drive, Charlotte, North Carolina 28262
(arnoldt@us.ibm.com). Mr. Arnold is a Senior Technical Staff
Member at the IBM Laboratory in Charlotte, North Carolina.
After receiving a B.S. degree in electrical engineering from
Case Western Reserve University in 1978, he joined IBM,
where he initially worked on optical character recognition
systems for high-speed check-processing systems. Since 1985,
he has worked in development of high-security cryptographic
products, with particular emphasis on the requirements of
the banking and finance industry. He was responsible for the
development of the first IBM smart-card product, which won
the “Most Innovative Smart Card Product of 1989” award at
the European Smart Card Application Technology (ESCAT)
Conference. He received an IBM Outstanding Innovation
Award for this work in that same year. He is an author or co-
author of eight patents, and has contributed to several ANSI
and ISO standards in the area of security. Mr. Arnold is a
member of the Institute of Electrical and Electronics
Engineers.

Leendert P. Van Doorn IBM Research Division, Thomas
J. Watson Research Center, P.O. Box 218, Yorktown Heights,
New York 10598 (leendert@us.ibm.com). Dr. Van Doorn is
a Research Staff Member at the IBM Thomas J. Watson
Research Center, where he runs the Secure Systems
Department. He received his Ph.D. degree in computer
science from the Vrije Universiteit in Amsterdam. In 1998
he joined IBM, where he has worked on physically secure
coprocessors, wireless network security, and secure operating
systems. More recently, he has been working on the
integration of Trusted Computing Group technology into
Linux and other operating systems and on a secure hypervisor.
Before joining IBM, he worked on the capability-based
distributed operating system Amoeba and on the extensible
operating system Paramecium. Dr. Van Doorn is a member
of IEEE, ACM, and Usenix.

IBM J. RES. & DEV. VOL. 48 NO. 3/4 MAY/JULY 2004 T. W. ARNOLD AND L. P. VAN DOORN

487

