
THE DESIGN AND APPLICATION

OF AN

EXTENSIBLE OPERATING SYSTEM

Leendert van Doorn

VRIJE UNIVERSITEIT

THE DESIGN AND APPLICATION
OF AN

EXTENSIBLE OPERATING SYSTEM

ACADEMISCH PROEFSCHRIFT

ter verkrijging van de graad van doctor aan
de Vrije Universiteit te Amsterdam,
op gezag van de rector magnificus

prof.dr. T. Sminia,
in het openbaar te verdedigen

ten overstaan van de promotiecommissie
van de faculteit der Exacte Wetenschappen /

Wiskunde en Informatica
op donderdag 8 maart 2001 om 10.45 uur
in het hoofdgebouw van de universiteit,

De Boelelaan 1105

door

LEENDERT PETER VAN DOORN

geboren te Drachten

Promotor: prof.dr. A.S. Tanenbaum

To Judith and Sofie

Publisher: Labyrint Publication
P.O. Box 662
2900 AR Capelle a/d IJssel - Holland
fax +31 (0) 10 2847382

ISBN 90-72591-88-7

Copyright © 2001 L. P. van Doorn

All rights reserved. No part of this publication may be reproduced, stored in a retrieval
system of any nature, or transmitted in any form or by any means, electronic, mechani-
cal, now known or hereafter invented, including photocopying or recording, without
prior written permission of the publisher.

Advanced School for Computing and Imaging

This work was carried out in the ASCI graduate school.
ASCI dissertation series number 60.

Parts of Chapter 2 have been published in the Proceedings of the First ASCI Workshop
and in the Proceedings of the International Workshop on Object Orientation in Operat-
ing Systems.

Parts of Chapter 3 have been published in the Proceedings of the Fifth Hot Topics in
Operating Systems (HotOS) Workshop.

Parts of Chapter 5 have been published in the Proceedings of the Sixth SIGOPS Euro-
pean Workshop, the Proceedings of the Third ASCI Conference, the Proceedings of the
Ninth Usenix Security Symposium, and filed as an IBM patent disclosure.

Contents

Acknowledgments iv

Samenvatting vi

1 Introduction 1

1.1 Operating Systems 2

1.2 Extensible Operating Systems 4

1.3 Issues in Operating System Research 6

1.4 Paramecium Overview 7

1.5 Thesis Contributions 10

1.6 Experimental Environment 12

1.7 Thesis Overview 14

2 Object Model 15

2.1 Local Objects 16
2.1.1 Interfaces 17
2.1.2 Objects and Classes 21
2.1.3 Object Naming 23
2.1.4 Object Compositions 27

2.2 Extensibility 30

2.3 Discussion and Comparison 31

3 Kernel Design for Extensible Systems 34

3.1 Design Issues and Choices 36

3.2 Abstractions 40

3.3 Kernel Extension Mechanisms 41

3.4 Paramecium Nucleus 45
3.4.1 Basic Concepts 46

i

3.4.2 Protection Domains 48
3.4.3 Virtual and Physical Memory 51
3.4.4 Thread of Control 54
3.4.5 Naming and Object Invocations 67
3.4.6 Device Manager 72
3.4.7 Additional Services 74

3.5 Embedded Systems 75

3.6 Discussion and Comparison 76

4 Operating System Extensions 84

4.1 Unified Migrating Threads 85
4.1.1 Thread System Overview 85
4.1.2 Active Messages 88
4.1.3 Pop-up Thread Promotion 90
4.1.4 Thread Migration and Synchronization 93

4.2 Network Protocols 96
4.2.1 Cross Domain Shared Buffers 96
4.2.2 TCP/IP Protocol Stack 100

4.3 Active Filters 101
4.3.1 Filter Virtual Machine 105
4.3.2 Example Applications 109

4.4 Discussion and Comparison 112

5 Run Time Systems 116

5.1 Extensible Run Time System for Orca 117
5.1.1 Object-based Group Active Messages 120
5.1.2 Efficient Shared Object Invocations 123
5.1.3 Application Specific Optimizations 125

5.2 Secure Java Run Time System 128
5.2.1 Operating and Run Time System Integration 131
5.2.2 Separation of Concerns 132
5.2.3 Paramecium Integration 136
5.2.4 Secure Java Virtual Machine 137
5.2.5 Prototype Implementation 152

5.3 Discussion and Comparison 153

ii Contents

6 Experimental Verification 158

6.1 Kernel Analysis 159

6.2 Thread System Analysis 170

6.3 Secure Java Run Time System Analysis 174

6.4 Discussion and Comparison 179

7 Conclusions 181

7.1 Object Model 181

7.2 Kernel Design for Extensible Systems 183

7.3 Operating System Extensions 186

7.4 Run Time Systems 187

7.5 System Performance 189

7.6 Retrospective 189

7.7 Epilogue 190

Appendix A: Kernel Interface Definitions 192

Bibliography 196

Index 212

Curriculum Vitae 216

Contents iii

Acknowledgments

Although my advisor, Andy Tanenbaum, thinks otherwise, I view a Ph.D. as a
period of learning as much as you can in as many different subjects that are interesting.
In this respect I took full advantage of my Ph.D.: I did work ranging from
programming my own EEPROMs, to secure network objects, digital video on demand,
and a full blown new operating system with its own TCP/IP stack, an experimental
Orca runtime system, and a secure Java virtual machine. I even considered building
my own network hardware but was eventually persuaded to postpone this. This advice
no doubt sped up the completion of this thesis considerably.

There are a large number of people who assisted and influenced me during my
Ph.D. and for which I have great admiration. First of all there is my advisor, Andy
Tanenbaum, who was always quick to jump on my half-baked ideas and forced me to
give better explanations, and of course Sharon Perl who picked me as an intern at
Digital Systems Research Center. I really felt at home at SRC, in fact so much that I
came back the next summer to work with Ted Wobber on secure network objects. Two
other SRC employees who deserve an honorable mention are Mike Burrows for our
technical discussions and for pointing out to me that puzzles are actually fun, and
Martin Abadi for his conciseness and precision; Virtues I often lack.

Of course, I should not forget Rob Pike, who thought I was spending too much
time at DEC SRC and that I should also visit Bell Labs. I was more than eager to take
him up on that. During that summer I had ample opportunity to play with Inferno,
Plan 9 and digital video. I’m forever in debt to Ken and Bonnie Thompson for their
hospitality, which still extends to today. Most of my time at Bell Labs I spent with
Dave Presotto and Phil Winterbottom. Phil reminded me in more than one way of
Mike Burrows, albeit a much more critical version.

As so many Ph.D. students, I took longer than the officially approved four years
to finish my thesis. Rather than staying at the university, I was persuaded to join IBM
T.J. Watson Research Center as a visiting scientist and finish my thesis there. After
four months it was clear I liked the place; industrial research laboratories are
surprisingly similar; and I joined IBM as a research staff member. Here I worked on
my secure Java Virtual Machine, but also got distracted enough that the writing of my
thesis got delayed considerably, despite the almost daily reminders by my group
members and not infrequent ones from my advisor. My group members included
Charles Palmer, Dave Safford, Wietse Venema, Paul Karger, Reiner Sailer and Peter
Gutmann. I managed to tackle this daily nuisance by stating that inquiries about my
thesis progress were in fact voluntary solicitations to proofread my thesis. Some, who

iv

did not get this in time, ended up proof reading my drafts. Then there were others who
practically forced me to give them a copy to proofread. I guess they could not stand the
suspense any longer, which I had carefully cultivated over the last two years. Without
going into detail who belonged to which group, I would like to thank Charles Palmer,
Jonathan Shapiro, Dan Wallach, Ronald Perez, Paul Karger, and Trent Jaeger who
provided me with much useful feedback on my thesis or papers that comprise it.

Besides the people mentioned above, there is the long cast of characters who
contributed to my thesis in one way or another. First of all there is the old Amoeba
group of which I was part and where I learned many of the traits and got my early
ideas. This group, at that time, consisted of Frans Kaashoek, Ed Keizer, Gregory
Sharp, Hans van Staveren, Kees Verstoep, and Philip Homburg. Philip has been my
office mate at the VU for most of the time and someone with whom I could exchange
hacking problems and who provided feedback on part of this thesis. Then there is the
ORCA group, consisting, at that time, of Henri Bal, Koen Langendoen, Raoul
Bhoedjang, Tim Rühl, and Kees Verstoep. They did a marvelous job at the Orca run-
time system which I took advantage of in my implementation.

In the Dutch system, once a thesis is approved by the advisor, it is passed on to a
reading committee for a final verdict. My reading committee consisted of Frans
Kaashoek, Paul Karger, Sape Mullender, Charles Palmer, and Maarten van Steen.
They provided much useful and insightful feedback which greatly improved this thesis.

I also wish to thank the Department of Mathematics and Computer Science of the
Vrije Universiteit, N.W.O., Fujitsu Micro Electronics Inc., and IBM T.J. Watson
Research Center for providing support for carrying out the research and especially for
the generous funding for trips, books, and equipment.

Without a doubt, the hardest part of writing this thesis was the Dutch summary.
Mainly because Dutch lacks the appropriate translation for many English computer
terms. Fortunately, our Belgium neighbors were very helpful in this respect and put up
a web site (in proper Dutch, een webstek) with lots of useful suggestions. I have used
their site, http://www.elis.rug.ac.be/nederlands.html, frequently.

Finally, but certainly not least I would like to thank Judith for her love and
continuing support and of course Sofie for being as quiet as a mouse during the
evenings and during the daytime reminding me of her quality time by grabbing the
Ethernet cable to my notebook.

Acknowledgments v

Samenvatting

Ontwerp en toepassingen van een uitbreidbaar bedrijfssysteem

Introductie

Traditionale bedrijfssystemen laten zich moeilijk aanpassen aan de eisen van moderne
toepassingen. Toepassingen, zoals multimedia, Internet, parallelle, en (in hardware)
ingebouwde toepassingen hebben elk erg verschillende bedrijfssysteem eisen.
Multimedia toepassingen verwachten dat het bedrijfssysteem bepaalde handelingen op
tijd afmaakt, Internet toepassingen verwachten specifieke netwerk-protocol
implementaties, parallelle toepassingen verwachten snelle communicatie-primitieven,
en ingebouwde toepassingen hebben specifieke geheugeneisen. In dit proefschrift
beschrijven we een nieuw bedrijfssysteem, Paramecium, dat dynamisch uitbreidbaar is
en zich kan aanpassen aan de verschillende eisen van moderne toepassingen. Aan de
hand van dit systeem bestuderen we de vraag of uitbreidbare bedrijfssystemen nieuwe
toepassingen mogelijk maken die moeilijk of onmogelijk te implementeren zijn in
huidige systemen.
Paramecium bestaat uit drie onderdelen: een kern die de basis vormt van het systeem,
een aantal systeem extensies die de kern of toepassingen kunnen uitbreiden en een
aantal toepassingen die gebruik maken van de kern en de systeem extensies. Alle
onderdelen van het systeem zijn uniform gedefinieerd in een objectmodel. Deze
uniformiteit zorgt ervoor dat dezelfde extensies zowel in de kern als in de toepassingen
kunnen worden geladen, wat een verbetering in de doorlooptijd of een betere
bescherming van het systeem kan opleveren.
In deze samenvatting beschrijven we: het objectmodel, de basiskern, een aantal
voorbeeld systeem-uitbreidingen en een aantal toepassingen die daar gebruik van
maken. Tenslotte geven we een samenvatting van de conclusies van dit proefschrift.

Objectmodel
Het objectmodel is een essentieel onderdeel van Paramecium. Centraal in dit model
staan modules, meerdere interfaces per module en een externe naamgeving voor
modules en interfaces. Elke module exporteert één of meerdere interfaces die
geïmplementeerd worden door de betreffende module. Het voordeel van meerdere
interfaces over één interface per module is dat de module op meerdere andere modules

vi

kan aansluiten. Bijvoorbeeld, een meerdradig uitvoeringspakket kan een bepaalde
interface aanbieden. Als we maar één interface per module zouden hebben, en we
willen het systeem uitbreiden met prioriteiten zouden we de interface moeten
aanpassen en alle toepassingen die van die interface gebruik maken. Met meerdere
interfaces per module kunnen we een nieuwe interface toevoegen zonder de oude
interface te veranderen en zo dus het aanpassen van alle toepassingen voorkomen.
Redenen om meerdere interfaces per module te hebben zijn: compatibiliteit, de
mogelijkheid om een module te vervangen door een module met dezelfde interface;
evolutie, de mogelijkheid om interfaces te evolueren; organisatie, het gebruik van
interfaces dwingt een modulaire software organisatie af, wat het overzicht en de
onderhoudbaarheid van het systeem ten goede komt.
Elke geïnstantieerde module is geregistreerd in een hiërarchische namenlijst onder een
symbolische naam. Om een referenties naar een bepaalde interface te krijgen moet een
module deze naam opzoeken in de namenlijst en vervolgens de juiste interface
selecteren. Deze namenlijst vormt de basis van de flexibiliteit van Paramecium. Om
een service aan te passen is het voldoende om de naam te vervangen door een module
met een gelijksoortige interface.
Naast interfaces en een namenlijst, kent het model ook objecten, klasses, en
composities. Een object is een aggregatie van data en operaties op die data. Een klasse
bevat de implementatie van die operaties waarbij één klasse meerdere object instanties
kan hebben. Een compositie is een aggregatie van meerdere objecten waarbij de
samenvoeging zich gedraagt als één object. Het objectmodel was ontworpen voor
gebruik in Globe en Paramecium. In tegenstelling tot Globe, gebruiken we in
Paramecium voornamelijk de module, de namenlijst en de meerdere interfaces per
module concepten van het model.

Uitbreidbare Bedrijfsystemen
De belangrijkste richtlijn voor het ontwerp van de basiskern was dat uitsluitend de
services die essentieel zijn voor de integriteit van het systeem zijn opgenomen in de
basiskern. Alle andere services worden dynamisch geladen naar gelang er behoefte aan
is door een toepassing. De kern bevat alleen de primitieve services zoals
basisgeheugenbeheer, basisuitvoeringsbeheer, en namenlijstbeheer. Alle andere
services, zoals virtueel geheugen, netwerk-protocol implementaties en het meerdradig
uitvoeringspakket zijn geïmplementeerd buiten de kern als aparte modules.
De eerste service die door de basiskern wordt aangeboden is geheugenbeheer, waarbij
vooral de notie van een context centraal staat. Een context is een verzameling van
virtuele naar fysieke pagina projecties, een namenlijst, en een fout afhandelingstabel.
In tegenstelling tot de meeste andere bedrijfsystemen bevat een context geen
executeerbare eenheid. Deze worden verzorgt door een ander mechanisme.
Het geheugenbeheer in Paramecium is onderverdeeld in twee aparte delen, het
reserveren van fysiek geheugen en het reserveren van virtueel geheugen. Het is aan de
gebruiker van deze primitieven om te bepalen hoe het fysieke geheugen geprojecteerd

Samenvatting vii

moet worden op het virtuele geheugen. Traditioneel zijn deze twee gekoppeld, maar
het loskoppelen brengt een extra flexibiliteit met zich mee die met name in onze Java
virtuele machine gebruikt wordt.
De tweede service bestaat uit uitvoeringsbeheer. Hiervoor gebruikt Paramecium een
mechanisme gebaseerd op gebeurtenissen, waarbij asynchrone (interrupts) en
synchrone (traps en explicite invokaties) gebeurtenissen vereenigd zijn in één
abstractie. Met elke gebeurtenis zijn een aantal hanteerders geassocieerd, waarbij elke
hanteerder uit een routine, een stapel voor de variabelen, en een context bestaat. Als
een gebeurtenis gactiveerd wordt, wordt de routine uit de geassocieerde hanteerder
onmiddelijk aangeroepen ongeacht wat er op dat moment wordt geexecuteerd. Dit
zorgt voor een minimale vertraging tussen het optreden van een gebeurtenis en de
afhandeling ervan. Boven op dit mechanisme hebben we traditionele IPC (interproces
communicatie) en een meerdradig uitvoeringssysteem gebouwd.
De derde service die de basiskern aanbiedt is het beheren van de namenlijst. Alhoewel
elke context een eigen hiërarchische namenlijst heeft, zijn de contexten zelf in een
boom structuur georganiseerd, waarbij de kern de wortel van de gerichte graaf is. Een
context heeft toegang tot de namenlijst van zichzelf en die van zijn kinderen, maar niet
tot die van zijn ouders. Een kern uitbreiding heeft toegang tot de kernnamenlijst en
heeft dus toegang tot alle interfaces in het systeem. Voor een voorbeeld van een
namenlijst zie Figuur 1.
De basiskern zorgt voor het laden, het registreren en importeren van interfaces en het
verwijderen van objecten in het hele systeem. De basiskern zorgt ook voor het
instantieëren van schaduw interfaces wanneer een context een interface importeert die
niet door die context geïmplementeerd wordt. Er wordt dan automatisch een schaduw
interface aangemaakt die de juiste methode in de andere context aanroept.
De belangrijkste eigenschap van de basiskern is dat het dynamisch uitgebreid kan
worden met extensies. Daar de belangrijkste functie van de kern het behoud van de
integriteit is, dienen extensies aan bepaalde voorwaarden te voldoen. Zij mogen
uitsluitend gebruik maken van toegestane geheugen lokaties en uitsluitend die code en
externe routines executeren die zijn toegestaan. Het probleem met deze twee
veiligeheidseisen is dat ze niet erg formeel zijn. Sommige onderzoekers zijn van
mening dat er speciale talen en vertalers nodig zijn om deze veiligheidseisen af te
dwingen. Andere onderzoekers gebruiken executie-tijd code-generatie om deze
eigenschappen af te dwingen. Wij nemen een ander standpunt in omdat het
automatisch afdwingen of verifieëren van deze eigenschappen niet in alle gevallen
mogelijk is. Wij zijn van mening dat het uitbreiden van de kern niets anders is dan het
uitbreiden van een vertrouwensrelatie waarvoor een digitale handtekening toereikend
is. Om een extensie in de basiskern te laden moet de extensie dan ook getekend zijn
met de juiste digitale handtekening. Het verkrijgen van deze digitale handtekening is
op verschillende manieren mogelijk: door externe validatie, door statische
verificatiemethoden of door code-generatie technieken, waarbij er een automatische
terugval mogelijkheid is als de gebruikte methode niet toereikend is. Het voordeel van

viii Samenvatting

/

nucleus contexts

events virtual ... jnucleus

nucleus devices program

/

monitor... tty

nucleus services devices program

/

thread counter fifo

contexts

exec_contextmailfs...

/

services program program

fifofs fifo

/

Daemon

daemon

Java nucleus

Kernel

Mail Executable
content

Figuur 1. Paramecium namenlijst. Elke context heeft zijn eigen namenlijst,

hier aangegeven door een gestreept vierkant. De contexten vormen een boom

met de kern als wortel.

een digitale handtekening is dat het al deze en andere methodes ondersteunt en ze
elkaar kunnen aanvullen.

Systeem Extensies
Naast de kern beschikt Paramecium over een verzameling systeem extensies. Dit zijn
services die traditioneel in de kern thuis horen maar die in Paramecium door de
toepassing geladen kunnen worden als daar behoefte aan is. In dit proefschrift
bespreken we drie van die extensies: een meerdradig uitvoeringspakket, een netwerk-
protocol implementatie, en een actief filter mechanisme voor het selecteren en
afhandelen van gebeurtenissen.
Het meerdradig uitvoeringspakket voor Paramecium wijkt af van andere systemen in
dat het niet in de basiskern zit. De basiskern weet niets van meerdradig uitvoeringen
en hoe ze geregeld moeten worden. Daarentegen kent de kern een concept van ketens,
een ketting van één of meerdere gebeurtenis aanroepen, waarvoor een co-routine-
achtige interface bestaat. Het meerdradig uitvoeringspakket gebruikt dit concept voor
zijn implementatie. De andere unieke kenmerken van ons meerdradig uitvoerings-

Samenvatting ix

pakket zijn dat een uitvoeringen zich van één context naar een andere kan begeven met
behoud van dezelfde uitvoeringsidentiteit en dat synchronisatie primitieven op een
efficiënte wijze aangeroepen kunnen worden vanuit meerdere contexten.
De tweede systeem extensie is een TCP/IP netwerk-protocol implementatie. Het meest
interessante onderdeel hiervan is het bufferbeheer gedeelte dat er voor zorgt dat de
verschilende componenten, zoals de netwerk besturingssoftware, de netwerk protocol
implementatie en de toepassing, in verschillende contexten geïnstantieerd kunnen zijn
zonder dat de data overbodig gekopieërd hoeft te worden. Ons buffersysteem doet dit
door slim met fysieke pagina’s en virtuele adresruimtes om te gaan.
De derde systeem extensie is een actief filter systeem dat zorgt voor het selecteren en
afhandelen van gebeurtenissen. Hier bestuderen we een ander extensie mechanisme
waarbij machine onafhankelijkheid essentieel is (in tegenstelling tot de kern extensie
mechanismen die we voor de rest van systeem gebruiken). De machine onafhankelijk-
heid is belangrijk omdat we filter expressies willen migreren naar coprocessoren of
andere hardware uitbreidingskaarten. Hiervoor hebben we een eenvoudige virtuele
machine gedefinieerd voor filter beschrijvingen. De filters zijn actief omdat ze tijdens
een gedeelte van de evalutie neveneffecten mogen hebben. Het is dus mogelijk om
eenvoudige bewerkingen geheel in een filter te implementeren.

Toepassingen
In dit proefschrift beschrijven we twee toepassingen die we gebouwd hebben boven op
de basiskern en bijbehorende systeem extensies. De bedoeling van deze toepassingen
is om de flexibiliteit van ons uitbreidbare bedrijfssysteem te valideren. Deze twee
toepassingen zijn: een flexibel ondersteuningssysteem voor de parallele programeertaal
Orca en een ondersteuningssysteem voor Java wat gebruikt maakt van hardwarematige
beveiliging in plaats van softwarematige beveiliging. We beschrijven de twee
systemen één voor één.
Ons ondersteuningssysteem voor Orca maakt gebruik van de flexibiliteit van de
namenlijst zodat er per Orca object instantie gebruikt gemaakt kan worden van
verschillende implementaties. Deze specifieke implementaties kunnen dan een Orca
object implementeren met minder strikte ordeningssemantiek en zo de doorlooptijd van
het programma verbeteren. Het idee hier achter is dat niet elk gedeeld object een totale
ordeningssemantiek vereist zoals dat wordt aangeboden door het standaard onder-
steuningssysteem voor Orca.
De tweede toepassing die wij gebouwd hebben is een Java Virtuele Machine (JVM) die
Java klasses van elkaar scheidt door gebruik te maken van hardware separatie in plaats
van software separatie technieken. Het voordeel van hardware separatie is dat het de
beveiligingsmechanismen die het bedrijfssysteem gebruikt hergebruiken en zo de TCB
(trusted computing base), dat gedeelte van het systeem waarop de beveiliging rust,
aanzienlijk verkleinen en dus de complexiteit van het systeem verminderen. Onze
JVM bestaat uit een centraal component, de Java Nucleus, die een Java klasse vertaalt
naar machine code in een bepaalde context en de beveiligingseisen uit het beveiligings-

x Samenvatting

beleid afdwingt. In welke context een klasse geplaatst wordt is afhankelijk van een
beveiligingsbeleid die beschrijft welke klassen in eenzelfde context geplaatst kunnen
worden, welke klassen met andere klassen kunnen communiceren, welke objecten
gedeeld kunnen worden tussen verschillende contexten en hoeveel geheugenruimte en
processortijd een context mag gebruiken.
Wanneer een Java methode wordt aangeroepen die zich in een andere context bevindt,
wordt er automatisch een gebeurtenis gegenereerd die wordt afgehandeld door de Java
Nucleus. Deze kijkt of, volgens het beveiligingsbeleid, de context daadwerkelijk die
methode mag aanroepen. Zo ja, dan wordt de methode in de andere context aange-
roepen. Zo nee, dan genereert de Java Nucleus een exceptie (zie Figuur 2). Naast het
controleren van methode aanroepen tussen verschillende contexten zorgt de Java
Nucleus ook voor het delen van objecten tussen de verschillende contexten. Wanneer
tijdens een methode aanroep een object referentie wordt meegegeven zorgt de Java
Nucleus ervoor dat dit object beschikbaar is in allebei de contexten inclusief alle
objecten waarnaar het refereert.

Java Nucleus

Domein A Domein B Domein C

Methode M
Methode X

ExceptieRoep M

Roep X

Hardware separatie

A mag M aanroepen B mag X niet aanroepen
Beveiligingsbeleid

B mag X niet aanroepen

A mag M aanroepen

Figuur 2. De Java Nucleus gebruikt hardware beveiliging om Java klasses te

scheiden door ze in aparte contexten te plaatsen. Het beveiligingsbeleid

bepaald welke klasse in welke context wordt geplaatst en tot welke methodes

het toegang heeft.

De Java Nucleus beheert alle objecten die gebruikt worden door de Java klasses en
implementeert één grote adresruimte waar elke context een bepaalde projectie op heeft
die afhankelijk is van welke klassen en objecten zich in die context bevinden. Dit is
een voorbeeld van toepassingsspecifiek geheugenbeheer dat mogelijk is omdat het
reserveren van fysiek en virtueel geheugen gescheiden zijn. Het gebeurtenis-
mechanisme van de kern maakt het mogelijk dat fouten die op individuele virtuele
pagina’s optreden doorgestuurd kunnen worden naar de Java Nucleus voor verdere

Samenvatting xi

afhandeling. Het migrerende meerdradig uitvoeringspakket maakt het verplaatsen van
een executeerbare uitvoering tussen contexten erg eenvoudig. De Java Nucleus zelf
kan ook gebruikt worden als een kern extensie, dit verbetert de doorlooptijd van de
JVM.

Conclusies
De centrale vraagstelling in dit proefschrift was of een uitbreidbaar bedrijfssysteem
nuttig was en of het toepassingen mogelijk maakte die moeilijk tot onmogelijk te doen
zijn in huidige bedrijfssystemen. Alhoewel deze vraag moeilijk voor alle uitbreidbare
bedrijfssysteem te beantwoorden is, kunnen we wel naar de onderzoeksbijdragen van
Paramecium specifiek kijken. De belangrijkste onderzoeksbijdragen van dit proef-
schrift zijn:

� Een eenvoudig objectmodel voor het bouwen van uitbreidbare systemen,
waarbij interfaces, objecten, en een externe namenlijst centraal staan.

� Een uitbreidbaar bedrijfssysteem dat gebruikt maakt van een vertrouwens-
relatie om de kern uit te breiden.

� Een nieuwe Java Virtuele Machine die gebruikt maakt van hardware fout
protectie om Java klasses transparant en efficiënt van elkaar te scheiden.

De resterende onderzoeksbijdragen zijn:
� Een migrerend meerdradig uitvoeringspakket met efficiënte primitieven voor

synchronisatie vanuit verschillende contexten.
� Een buffersysteem waarbij de data efficiënt gedeeld kan worden tussen

verschillende contexten zonder overbodig te kopieëren.
� Een actief filter mechanisme voor het selecteren en doorgeven van

gebeurtenissen.
� Een uitbreidbaar parallel programmeersysteem.
� Een object gebaseerd groep-communicatie-protocol dat gebruik maakt van

actieve berichten.
� Een gedetaileerde analyse van IPC en context wisselingen in de kern, de

systeem uitbreidingen en de toepassingen.

In dit proefschrift laten we zien dat ons systeem aan aantal toepassingen mogelijk
maakt, zoals het efficiënt buffer mechanisme en de Java virtuele machine, die moeilijk
te doen zijn in een traditioneel bedrijfssysteem.

xii Samenvatting

1

Introduction

Traditional operating systems tend to get in the way of contemporary application
demands. For example, diverse application areas such as continuous media, embedded
systems, wide-area communication, and parallel computations all have very different
operating system requirements. Providing a single operating system to support all
these demands, results in either very large and complex systems that provide the neces-
sary support but at a high cost in added complexity and loss of efficiency, or in applica-
tion specific and usually very rigid systems.

This thesis is based on the observation that applications have varying operating
systems needs and that many applications require more control over their hardware and
system services. To investigate this observation, we study the design, implementation,
application, and performance of extensible operating systems. These systems enable
applications to tailor the operating system by allowing the application to add new or
enhance existing services without jeopardizing the security of the system. Program-
mers can add application-specific customizations to improve performance or add func-
tionality.

Central to this thesis is our own extensible operating system, called Parame-
cium†, which we have designed and implemented. Paramecium is a highly dynamic
system, where applications decide at run time which extensions to load, and which
allows us to build application-specific or general-purpose operating systems. The
foundation of this system is a common software architecture for operating system and
application components. We use this architecture to construct a tool box of com-
ponents. Applications choose their operating system and run-time components from
this tool box, or add their own, possibly with application-specific enhancements.

Paramecium’s design was driven by the view that the kernel’s only essential task
is to protect the integrity of the system. Consequently the Paramecium kernel is very
small and contains only those resources that are required to preserve this integrity.

� ���������������������������

†A Paramecium is slightly more advanced than an Amoeba; for example, it knows about sex.

1

Everything else is loaded on demand either into the kernel or into user space, with the
user having control of the placement and implementation. This enables the user to
trade off the user-level/kernel-level placement of components that are traditionally
found in the kernel, enhance or replace existing services, and even control the memory
footprint and real time constraints required for embedded systems.

1.1. Operating Systems
An operating system is a program or set of programs that mediate access to the

basic computing resources provided by the underlying hardware. Most operating sys-
tems create an environment in which an application can run safely without interference
from other applications. In addition, many provide the application with an abstract
machine independent interface to the hardware resources that is portable over different
platforms.

There are two popular views of an operating system: The operating system as a
resource manager or the operating system as an abstract virtual machine [Brooks,
1972; Dijkstra, 1968b].

The view of a resource manager has the operating system acting as an arbiter for
system resources. These resources may include disks, CD-ROMs, networks, CPU
time, etc. Resources are shared among various applications depending on each
application’s requirements, security demands, and priority.

A different view of the operating system is that of an abstract virtual machine.
Each virtual machine provides a level of abstraction that hides most of the idiosyn-
crasies of lower level machines. A virtual machine presents a complete interface to the
user of that machine. This principle can be applied recursively.

An operating system provides an interface to its applications to enhance the
underlying hardware capabilities. This interface is more portable, provides protection
among competing applications, and has a higher level of abstraction than the bare
hardware. For example, an operating system can provide a read operation on files
rather than on raw disk sectors. Access to these files can be controlled on a per appli-
cation basis, and the read interface itself is portable over different platforms. A key
aspect for many operating systems is to provide fault isolation between concurrent
applications. This allows the system to be shared among multiple applications without
faults in one application impacting another.

An operating system is composed of various subsystems, each providing a cer-
tain service. Following the virtual machine model, a typical operating system consists
of the system layers 1, 2, and occasionally layer 3 as depicted in Figure 1.1. The lowest
level, 0, consists of the actual computer hardware. This level contains the processor,
memory, and peripheral devices. Levels 1 and 2 contain the operating system kernel.
Level 1 consists of the core operating system. This core provides process (or protec-
tion domain) management, interprocess communication (IPC), memory management,
etc. Level 2 consist of higher level abstractions, such as file systems for managing

2 Introduction CHAPTER 1

� ���

Level 4 Applications
� ���

Level 3 Runtime systems,

interpreters,

database systems� �� ���

Level 2 File system,

communication protocols
� ���

Level 1 Device drivers,

process management,

interprocess communication,

memory management� �� ���

Level 0 Hardware (CPU, MMU,

device controllers)
� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 1.1. Example of a layered system.

storage devices and communication protocols providing reliable cross network com-
munication.

Applications reside outside the operating system kernel. These appear at the
highest levels. Here too we can clearly distinguish two layers. Level 3 consists of
run-time systems and interpreters (like PVM [Sunderam, 1990] or a Java Virtual
Machine [Lindholm and Yelin, 1997]). On top of this resides the application. The
application sees the virtual machine provided by the run-time system and the run-time
system in turn sees the kernel as its virtual machine.

The actual implementation of an operating system does not have to follow its vir-
tual machine abstractions. In fact, ExOS [Engler et al., 1994] and Paramecium
encourage programs to break through the abstraction layers to reduce the performance
bottlenecks associated with them.

A number of different architectural organizations are possible for an operating
system, ranging from monolithic to a client-server operating system. In the monolithic
case, all operating system functions (i.e., levels 1 and 2) are integrated into a single sys-
tem (e.g., UNIX [Ritchie and Thompson, 1974], and OpenVMS [Kronenberg et al.,
1993]). The advantage of this approach is good performance; the disadvantages are
that, especially with large systems, it becomes hard to make enhancements to the sys-
tem because of the complexity. Modular operating systems remedy this problem by
isolating subsystems into distinct modules (e.g., Oberon [Wirth and Gütknecht, 1992]).
The use of this software engineering technique manages the complexity of the system
but can add a performance overhead introduced by the many extra procedure calls.
Both monolithic and modular organizations have bad fault isolation properties. For
example, it is very hard to contain a memory fault to a single module.

SECTION 1.1 Operating Systems 3

In a client-server operating system approach, the subsystems are implemented as
processes that run in their own address space (e.g., QNX [Hildebrand, 1992], Amoeba
[Tanenbaum et al., 1991]). The kernel provides rudimentary interprocess communica-
tion. This process approach provides much better fault isolation since the subsystems
are confined to their own protection domains. The main disadvantage of this approach
is the additional performance overhead incurred due to the increased use of interpro-
cess communication. This overhead can easily be more than 1000 times more expen-
sive than a normal procedure call†.

An extensible operating system organization, and especially the system described
in this thesis, is a combination of these three architectures. It combines the modular
approach and the monolithic approach by allowing modules to be placed into the kernel
address space. Modules can also be placed into the user address space providing the
advantages of a client-server operating system approach. The placement of modules is
determined by a trade-off between fault isolation and performance. Good fault isola-
tion incurs a high cross protection domain call overhead, good performance results in
low fault isolation. The main disadvantage of a modular approach is that it precludes
macro-optimizations that would have been possible by integrating modules or using the
internal information of these modules.

1.2. Extensible Operating Systems
An extensible operating system differs from a traditional operating system in that

it consists of a skeletal kernel that can be augmented with specific modules to extend
its functionality. More precisely, for the purpose of this thesis we define an extensible
operating system in the following way:

An extensible operating system is one that is capable of dynamically
adding new services or adapting existing ones based on individual applica-
tion demand without compromising the fault isolation properties of the sys-
tem.

Given this definition we can clearly identify the three components that comprise
an extensible operating system:

1) A base system , which provides a primitive set of services.

2) Extension mechanisms , which allows the definition of new services in terms
of the basic primitive services.

3) A collection of modules , that can be added to the base system using the exten-
sion mechanisms.

What is included in the base system differs per extensible operating system. For
example, Vino [Seltzer et al., 1996] provides a full monolithic Berkeley UNIX kernel,
SPIN [Bershad et al., 1994] provides a microkernel, Paramecium provides a nanoker-

� ���������������������������

†This is the number for Microsoft’s NT 4.0 kernel [Wallach et al., 1997].

4 Introduction CHAPTER 1

nel, and the Exokernel project [Engler et al., 1995] provides a secure way of demulti-
plexing the underlying hardware. The extension mechanisms also vary greatly among
these. SPIN, for example, provides a mechanism to add extensions to each procedure
call made in the kernel. The Exokernel provides most of the operating system services
in the form of libraries that are part of the user address space and can be replaced or
adapted on a per application basis. In Paramecium the kernel provides a small number
of primitive functions that cannot be extended; all other services (including thread sys-
tem, device drivers, etc.) are contained in modules which are loaded into the system on
demand at run time and can therefore be replaced or adapted.

The most difficult aspect of extending a kernel is maintaining a notion of fault
isolation (kernel safety). After all, the kernel prevents different applications from
interfering with each other. Adding extra code to the kernel without special precau-
tions can annul the security properties of the kernel. Therefore extensions should be
limited and at least provide some form of pointer safety and control safety. Pointer
safety prevents an extension from accessing memory outside its assigned regions. Con-
trol safety prevents the extension from calling arbitrary procedures and executing
privileged instructions.

Enforcing these safety properties can either be done by run-time code generation
[Engler et al., 1994], type-safe compilers [Bershad et al., 1995b], proof-carrying code
[Necula and Lee, 1996], or code signing. The first two control the code that is inserted
into the kernel by sandboxing it. The problem with this method is that unless the exten-
sion is severely restricted its safety properties are formally undecidable [Hopcroft and
Ullman, 1979]. Proof-carrying code carries with the code a formal proof of its correct-
ness. Generating this proof correctly, however, is not a trivial exercise. The last
method, code signing, defers from proving the correctness of the code but rather
assigns a notion of trust to it. When the code is trusted enough it is allowed to extend
the kernel.

While researchers disagree over the exact nature of the base system and their
extension mechanisms, extensible operating systems generally have the following
characteristic: they allow safe application specific enhancement to the operating system
kernel. This allows them to improve performance by, for example, adding specialized
caches, introducing short-cuts, influencing memory allocation, prefetching buffers, etc.

Extensible operating systems are also useful for building embedded systems
because of their real time potential and control over their memory footprint. For exam-
ple, in Paramecium it is possible to replace the thread module by one that provides ear-
liest dead-line first (EDF) scheduling rather than round-robin. Controlling the memory
footprint is important because embedded systems usually operate under tight time and
memory constraints. The ability to adapt the operating system dynamically is espe-
cially useful for embedded applications such as personal digital assistant operating sys-
tems where the user may run many different applications ranging from interactive
games to viewing MPEG movies. A minor, but, for computer scientists, very appealing

SECTION 1.2 Extensible Operating Systems 5

trait is that extensible operating systems allow easy experimentation with different
implementations of operating systems components.

Our definition above emphasizes the ability to extend the system dynamically
rather than statically. This explicitly excludes modular operating systems like Choices
[Campbell et al., 1987], OSKit [Ford et al., 1997], and Scout [Montz et al., 1994]
which are statically configurable, that is, at compile or link time. It also excludes sys-
tems such as Solaris [Vahalla, 1996], Linux [Maxwell, 1999], Chorus [Rozier et al.,
1988], and Windows NT [Custer, 1993] which provide dynamically loadable kernel
modules. The reason for excluding these systems is that in all of them, it is not the
application that extends the operating system, but rather a highly specialized and single
purpose operating system is constructed for one application. Usually, the application is
part of the operating system. Extensible operating systems are more general; they are
multipurpose systems that contain specializations for one or more applications. When
an application finishes running, the extension is removed from the system.

1.3. Issues in Operating System Research
Some of the research issues in operating system research for the last five years

has been dealing with one or more of the following:
� Decomposition and modularization.
� Performance.
� Extensibility.
� Interpretation, and machine independence.

Decomposition and modularization is mainly a software engineering issue.
These were considered necessary after the unyielding growth and consequent mainte-
nance problems of monolithic operating systems. The microkernel was deemed the
answer to this problem. A small kernel with many separate server processes imple-
menting the operating services. Major proponents of these microkernel systems are:
Amoeba, Chorus, Mach [Accetta et al., 1986], Minix [Tanenbaum and Woodhull,
1997], and Spring [Mitchell et al., 1994].

Microkernels did deliver the desired modularization of the system but failed to
deliver the performance. This was attributed to two reasons. The first was the large
number of cross protection domain calls (IPC) caused by the decomposition into many
different server processes. A typical cross protection domain call on a microkernel is
of the order of several 100s of microseconds. These add up quickly, especially on mul-
tiserver implementations of inherent tightly coupled applications (e.g., the UNIX mul-
tiserver implementation [Stevenson and Julin, 1995]).

The second reason for the performance problems is the sharing of large amounts
of data across protection domains. This is especially true when sharing network
packets, file system or disk buffers. Copy-on-write (introduced by Accent [Fitzgerald
and Rashid, 1986] and heavily used by Mach) did not alleviate these problems since it

6 Introduction CHAPTER 1

assumes that the data is immutable. When the data is mutable, a separate copy is made
on the first write. The multiserver UNIX implementation for Mach showed that large
sets of shared data were, in fact, mutable data [Druschel and Peterson, 1992] and
copy-on-write failed to deliver the performance hoped for.

Extensible kernels can be considered a retrograde development with respect to
microkernels. The microkernel design focuses on moving many services found in
monolithic systems outside the kernel address space. Extensible kernels, on the other
hand, allow the applications to add specific customizations to the operating systems.
When used together with the microkernel concepts, extensibility can be used to reduce
the performance penalty introduced by pure microkernel systems and still provide good
modularity. For example, a server can extend the kernel with code to handle critical
parts of its network processing rather than requiring an expensive cross protection
domain call on each incoming network packet.

Separating machine-dependent from machine-independent modules allows
modules to be reused among different platforms. Since most modules are platform
independent (e.g., file server, process server, time server, etc.) this leads to a very port-
able operating system.

A different approach for reaching this same goal is to provide a platform
independent virtual machine as part of the operating system. Examples of these sys-
tems are: Forth [Moore and Leach, 1970; Moore, 1974], UCSD P-code [Clark and
Koehler, 1982], Inferno [Dorward et al., 1997], JavaOS [Saulpaugh and Mirho, 1999],
KaffeOS [Black et al., 2000], and Elate [Tao Systems, 2000]. Each of these platforms
runs interpreted code rather than native machine code. The advantage of this approach
is that the code can be trivially ported to different architectures. The problem with this
approach is that it usually requires on-the-fly compilation techniques to improve the
performance. Even then performance is about 30% of that of native code, a penalty not
everyone is willing to pay.†

1.4. Paramecium Overview
In this thesis we present a simple extensible system for building application-

specific operating systems. We discuss the design, implementation and application of
the system. Fundamental to our system is the concept of modules which are loaded
dynamically and on demand by the operating system kernel and its applications. An
object model defines how these modules are constructed and how they interact with the
rest of the system.

Central to the object model are the concepts of multiple interfaces per module
and an external interface name space. Modules export one or more interfaces that pro-
vide operations which are implemented by that module. The interface references are
stored under a symbolic name in a hierarchical name space. The only way to bind to an

� ���������������������������

†This statement was made by one of the authors of Inferno, David Presotto from Lucent Bell Labs, dur-
ing a panel session at the Hot Topics in Operating Systems Workshop (HOTOS-IV) in 1997.

SECTION 1.4 Paramecium Overview 7

interface exported by another module is through this name space. This is the main
mechanism through which extensibility is achieved. An operator can replace or over-
ride interface names in this name space and refer to different implementations than the
system supplied ones.

The Paramecium system itself consists of three parts: kernel, system extensions,
and applications. In this thesis we describe examples of each of these. The kernel is a
small microkernel. The main design guideline for the kernel was that the base kernel
includes only those services that are essential for the integrity of the system. All other
services can be added dynamically and on demand by an application. The base kernel
includes services such as: memory management, rudimentary thread of control
management, and name space management. It excludes services such as demand pag-
ing, device drivers, thread packages, and network stacks.

The base kernel implements the concept of an address space, called a context,
which is essentially a set of virtual to physical memory mappings, a name space, and a
fault redirection table. A context does not include a thread of control, these are orthog-
onal to contexts. The kernel manages physical and virtual memory separately, it is up
to the allocator of the memory to create to the virtual to physical mappings.

To manage threads of control, the kernel provides a preemptive event mechanism
which unifies synchronous and asynchronous traps. This mechanism provides the basis
for IPC and interrupt handling. A sequence of consecutive event invocations is called a
chain. The base kernel provides a co-routine like mechanism to swap among different
chains, this is used by our thread package extension to implement thread scheduling.

The base kernel can be augmented or extended by adding new modules to it. To
preserve the integrity of the system only appropriately signed modules may be loaded
into the kernel. Unlike other systems, the kernel does not enforce control and memory
safety. It depends on other mechanisms to guarantee or enforce these properties. The
kernel assumes that only modules that conform to these properties are signed. In
Paramecium the kernel address space is just another context only with the additional
requirement that modules need to be appropriately signed.

The kernel maintains a single global name space for all instantiated module inter-
faces in the system. Other modules can bind to interfaces stored in this name space,
however, their visibility is restricted depending on which context the module is in. A
module can only bind to names in the name space belonging to that context or any of its
children. It cannot bind to any of its parent’s names. The kernel forms the root of this
name space, so any kernel extension can bind to any interface in the system, even when
it is in another context. When binding to an interface that is implemented by a module
in another context, the kernel automatically instantiates a proxy interface.

On top of this kernel we have implemented a number of system extensions.
These extensions are implemented as modules and are instantiated either in the kernel’s
context as an extension or in a user’s context as part of its run-time system. The sys-
tem extensions we describe in this thesis include: a thread package, a TCP/IP stack
using a shared buffer implementation, and an efficient filter based demultiplexing ser-

8 Introduction CHAPTER 1

vice. Our thread package allows a thread of control to migrate over multiple contexts
but still behave as a single schedulable entity. The package also provides an efficient
mechanism for sharing synchronization state between multiple contexts. Besides pass-
ing the thread of control efficiently between multiple contexts, it is equally important to
efficiently pass data between contexts without actually copying it. We explore this
aspect in our shared buffer implementation which is part of our TCP/IP stack.

Another system extension is our event demultiplexing service. This service
dispatches events to interested parties based on the evaluation of one or more filter
predicates. Because the requirements for filter predicates are very different and much
more restricted than for kernel extensions, we explore a different kind of extensibility:
the use of a simplified virtual machine and run-time code generation.

On top of the Paramecium kernel and its system extensions we have imple-
mented two applications: a flexible run-time system for the Orca [Bal et al., 1992]
language and a Java virtual machine that uses hardware protection to separate classes.
The Orca run-time systems exploits the flexibility features of the object name space to
allow programmers to provide specialized implementations for Orca shared objects.
These specialized implementations may relax the strict total ordering requirements as
dictated by the Orca language and provide weaker semantics for individual objects and
therefore reduce the overhead associated with providing stronger semantics.

Our second application, our Java Virtual Machine (JVM), uses many of the
features provided by Paramecium to enforce the hardware separation between classes.
Unlike traditional JVMs which use software-fault isolation, we have implemented a
JVM that uses hardware-fault isolation. This JVM uses run-time code generation and
separates classes into multiple contexts. Communication between these classes is han-
dled by a trusted third party, the Java Nucleus, which enforces access control on
method invocations between different contexts. Besides controlling method invoca-
tions, the system also provides an efficient way to share objects and simple data types
between different contexts. This mechanism can handle references to other data struc-
tures and enforce usage control on the data that is being shared between contexts. For
the implementation of our JVM we depend on many concepts provided by the kernel,
such as events, contexts, name spaces, separated physical and virtual memory manage-
ment, and our migrating thread package.

Paramecium is not a paper-only system. Most of the systems described in this
thesis have either been completely or partially implemented and run on a Sun
(SPARCClassic) workstation. The implemented systems are: the object model support
tools, the kernel and support tools, the migratory thread package, the TCP/IP network
stack and remote login services, the base Orca run-time system, and the Secure Java
Virtual Machine. In addition to these systems, we have also implemented a minimal
POSIX support library, a Forth interpreter, a shell and various demonstration and test
programs. As it currently stands, Paramecium is not self hosting. We have not fully
implemented the active filter mechanism, nor have we implemented enough Orca run-
time system extensions to support real applications.

SECTION 1.4 Paramecium Overview 9

1.5. Thesis Contributions
In this thesis we study the design, implementation, and application of our exten-

sible operating system. With it we try to determine how useful extensible operating
systems are and whether they enable new applications that are hard or impossible to do
in existing systems.

Fundamental to our approach is the use of a common object model in which all
components are expressed [Homburg et al., 1995]. These components are used to con-
struct the operating system at run time. Components can be placed either into the
kernel’s address space or user address space, while still providing a certain level of
protection guarantees [Van Doorn et al., 1995]. To validate this design we have imple-
mented an operating system kernel, a number of components that are typically found in
the kernel in traditional systems, and a number of applications. The system com-
ponents are a thread package and a TCP/IP stack. The applications we have imple-
mented are a simple Orca run-time system and a Java Virtual Machine using hardware
fault isolation.

All the components of the system are developed in a specially designed object
model. In this model, the operations provided by a component are defined as a set of
interfaces. Interfaces are the only way to invoke operations. Other components can
import these interfaces. This strict decoupling and emphasis on interface use allows
components to be interchanged as long as they export the set of interfaces expected by
its user. The object model is used both for Paramecium and Globe [Van Steen et al.,
1999]. Globe is an object-based wide-area distributed system intended to replace
current ad hoc Internet services.

The general idea behind the object model is to provide a tool box of reusable
components. These components are loaded on demand by the application. Com-
ponents are referred to through an external object instance name space. This name
space is controlled by the application, enabling it to specify alternate implementations
for a specific component.

Our object model is conceptually similar to the ones used in the OSKit [Ford et
al., 1997], LavaOS [Jaeger et al., 1998], and Microsoft’s Component Object Model
(COM) [Microsoft Corporation and Digital Equipment Corporation, 1995]. Each of
these projects developed their own object model, even though there is a clearly limited
design space, due to different requirements. The OSKit focuses on interfaces for which
a subset of COM was found sufficient. LavaOS relies on some of the run time aspects
found in CORBA [Otte et al., 1996] and developed a mini-CORBA component model.
Paramecium, on the other hand, focuses on interfaces, objects, external object naming,
and object compositions. Some of these ideas are novel and some can be traced back to
COM and CORBA. For research purposes, we preferred to explore these ideas in a
new model rather than limiting ourself by adapting the paradigms of existing models.

Although the object model was designed as an object-oriented system, it turns
out that Paramecium puts much more emphasis on its module features, whereas Globe
tends to use more of its object features (see Section 2.3 for more details). Both sys-

10 Introduction CHAPTER 1

tems, however, rely heavily on the object naming scheme for flexibility and configura-
bility. Globe provides many distributed extensions to the object model that are
currently not used by Paramecium.

Rather than using an existing operating system for our experiments we designed
our own new system. Our system is highly decomposed into many separate com-
ponents. The kernel provides a high performance IPC mechanism, user-level device
drivers, rudimentary virtual memory support, and digital signature verification for
safely down loading extensions. Of the existing promising operating systems at that
time (Amoeba, Chorus, Mach, and Spring), none fulfilled our definition of an extensi-
ble operating system. That is, they did not provide a minimal base system and exten-
sion mechanisms. Modifying existing systems was considered undesirable because
their tight integration made it hard to divide the system up into modules.

As Lauer [Lauer, 1981] pointed out, it takes at least 7 years to develop a full
featured nontrivial operating system. To reduce this development time we concen-
trated on building application-specific operating systems [Anderson, 1992]. More
specifically, as a proof of concept we concentrated on two applications: an Orca run-
time system and a secure Java virtual machine. Both of these systems adapt and extend
the operating system in ways that would require a major redesign of contemporary
operating systems, if it was even possible to do at all.

For example, Orca is a parallel programming system based on distributed data
objects for loosely-coupled systems. Our implementation contains an active message
[Von Eicken et al., 1992] component that is integrated into the network device drivers
and the thread system. For efficiency, this component bypasses all normal communica-
tion protocols. In addition, it is possible to specify alternative implementations per dis-
tributed object instance, possibly with different ordering semantics. Integrating this
into an existing operating system would require a major redesign.

As a second example we have implemented a secure Java Virtual Machine
(JVM). In this example we exploit Paramecium’s lightweight protection model where
an application is divided into multiple lightweight protection domains that cooperate
closely. This provides hardware fault isolation between the various subsystems that
comprise an application. As is well-known, the JVM is viewed by many as inherently
insecure despite all the efforts to provide it with strong security [Dean et al., 1996; Fel-
ten, 1999; Sirer, 1997]. Instead of the traditional software fault isolation based
approach, our JVM uses lightweight protection domains to separate Java classes. It
also provides access control on cross domain method invocations, enables efficient data
sharing between protection domains, and provides memory and CPU resource control.
Aside from the performance impact, these measures are all transparent to the Java pro-
gram if it does not violate the security policy. This protection is transparent, even
when a subclass is located in one domain and its superclass is in another. To reduce the
performance impact we group classes and share them between protection domains and
we map data on demand as it is being shared.

SECTION 1.5 Thesis Contributions 11

To give an overview, in this thesis we make the following major research contri-
butions:

� A simple object model that combines interfaces, objects, and an object
instance naming scheme for building extensible systems.

� An extensible, event-driven operating system that uses digital signatures to
extend kernel boundaries while preserving safety guarantees.

� A new Java virtual machine which uses hardware fault isolation to separate
Java classes transparently and efficiently.

In addition, we also make the following minor contributions:
� A migrating thread package with efficient cross protection domain synchroni-

zation state sharing.
� An efficient cross protection domain shared buffer system.
� An active filter mechanism to support filter based event demultiplexing.
� An extensible parallel programming system.
� An object based group communication mechanism using active messages.
� A detailed analysis of IPC and context switch paths encompassing the kernel,

system extensions, and applications.

The common theme underlying these contributions is that the use of an object-
based extensible operating system enables useful application specific kernel customiza-
tions that are much harder to make or impossible to do in contemporary operating sys-
tems.

1.6. Experimental Environment
The experimental environment for this thesis work consisted of a Sun

(SPARCClassic) workstation, a SPARC based embedded system board, and a simula-
tor. The Sun workstation was the main development platform. This platform was
emulated in software by a behavioral simulator. This class of simulators simulate the
behavior of the hardware rather than their precise hardware actions. The simulator and
the real hardware both run the same unmodified version of the Paramecium or SunOS
operating system. The embedded system board contains a stripped down version of the
SPARC processor, a Fujitsu SPARCLite. Its hardware is sufficiently different that it
requires a different version of the operating system kernel.

The SPARCClassic we used for our experiments contains a processor imple-
menting the Scalable Process ARChitecture (SPARC) [Sun Microsystems Inc., 1992].
SPARC is an instruction set architecture (ISA) derived from the reduced instruction set
computer (RISC) concept [Hennessy et al., 1996]. The SPARC ISA was designed by
Sun in 1982 and based on the earlier RISC I and RISC II designs by researchers at the
University of California Berkeley [Patterson and Ditzel, 1980].

12 Introduction CHAPTER 1

More specifically, the processor used in the SPARCClassic is a 50 MHz
MicroSPARC, a version 8 SPARC implementation. It consists of an integer unit, float-
ing point unit, memory management unit, and a Harvard (separate instruction and data)
style cache. The integer unit contains 120 general purpose registers of which only a
window of 24 local registers and 8 global registers are visible at any time. Effectively,
the register windows contain the top n levels of the stack and have to be explicitly
saved or restored by the operating system.

Halbert et. al. [Halbert and Kessler, 1980] showed that on average the calling
depth of a program is five frames. Under this assumption register windows are a good
optimization since they eliminate many memory accesses. Unfortunately, some of the
underlying assumptions have changed since then, greatly reducing the effectiveness of
register windows. These changes were due to the development of object-oriented
languages, modularization, and microkernels. Object-oriented languages and modulari-
zation tends to trash register window systems because of their much larger calling
depth. Microkernels greatly increase the number of protection domain crossings.
These are expensive since in traditional systems they require a full register window
flush on each protection domain transition and interrupt.

The MicroSPARC has separate instruction and data space caches. Both are one-
way set associative (also known as direct mapped) [Handy, 1993]. The instruction
cache size is 4 KB and the data cache size is 2 KB.

The memory management unit (MMU) on the SPARCClassic is a standard
SPARC reference MMU with a 4 KB page size. Each hardware context can address up
to 4 GB. The MMU contains a hardware context table with each entry holding a
pointer to the MMU mapping tables. Changing the current hardware context pointer
results in changing the virtual memory map. The translation look aside buffer (TLB), a
cache of virtual to physical address mappings, is physically tagged and does not have to
be flushed on a context switch.

From a processor point of view, the major difference between the embedded sys-
tem board and the SPARCClassic is the lack of hardware protection and the omission
of a floating point unit. Peripherals, such as network, video, and keyboard interfaces
that are found on a SPARCClassic are not present on the embedded system board. The
board contains two timers, memory refresh logic, and two serial port interfaces
(UARTs).

We have implemented our own SPARC Architecture Simulator to aid in the test-
ing of the system and its performance analysis. The simulator is a behavioral simulator
along the lines of, although unrelated to, SimOS [Rosenblum et al., 1995]. The simula-
tor is an interpreter and therefore it does not achieve the performance of SimOS. It
simulates the hardware of a SPARCClassic in enough detail to boot, run and trace
existing operating systems (e.g., Paramecium, Amoeba, and SunOS). Specifically, it
simulates a SPARC V8 processor, SPARC reference MMU, MBus/SBus, IO MMU,
clocks, UARTs, disks, and Ethernet hardware. Running on a 300 MHz Intel Pentium-II
the simulator executes its workload 40-100 times slower than the original machine.

SECTION 1.6 Experimental Environment 13

1.7. Thesis Overview
This thesis is organized as follows: The next chapter describes the object model

used throughout the Paramecium system. It is the overall structuring mechanism that,
to a large extent, enables and defines the degree of extensibility. Objects have one or
more named interfaces and are referred to through an external name space. This name
space controls the binding process of objects and is constructed by the application pro-
grammer or system administrator.

Chapter 3 discusses the Paramecium microkernel. This preemptive event-driven
kernel provides the basic object model support, object naming, memory management,
and protection domain control. Services that are typically found in the kernel in
monolithic systems are components in Paramecium. These components are dynami-
cally loaded at run time, into either the kernel or user address space. Two examples of
system components, the thread system and a TCP/IP implementation, are described in
Chapter 4.

Two applications of Paramecium are described in Chapter 5. The first applica-
tion is a run-time system for the parallel programming language Orca where the user
can control the individual implementations of shared objects. For example, this can be
used to control the ordering semantics of individual shared objects within an Orca pro-
gram. The second application is a Java virtual machine providing an operating system
style protection for Java applets. It achieves this by sandboxing groups of Java classes
and instances into separate protection domains and providing efficient cross domain
invocations and data sharing.

In Chapter 6 we look a the performance results of the Paramecium system and
compare it to other systems. Chapter 7 draws a number of conclusions from our experi-
ments and evaluates in more detail the applications of extensible operating systems.

14 Introduction CHAPTER 1

2

Object Model

In this chapter we study the design and implementation of the object model that
is used by Paramecium and Globe [Van Steen et al., 1999] and compare it with other
object and component models. The object model provides the foundations for the
extensible operating system and applications described in the next chapters. The model
consists of two parts: the local object model, which is discussed in this chapter, and the
distributed object model which is the topic of a different thesis [Homburg, 2001].

Our object model is a conceptual framework for thinking about problems and
their possible solutions. The basis of our model is formed by objects, which are entities
that exhibit specific behavior and have attributes. Examples of objects are: files, pro-
grams, processes, and devices. Objects provide the means to encapsulate behavior and
attributes into a single entity. Objects have operations on them that examine or change
these attributes. These operations are grouped into interfaces. In our model, objects
can have multiple interfaces. Each interface describes a well-defined set of related
operations. An object can be manipulated only by invoking operations from one of its
interfaces.

In addition to objects and interfaces, our object model also includes the notion of
object composition and object naming. A composite object encapsulates one or more
objects into a single object where the result behaves as any other ordinary object. In a
way, composite objects are to objects as objects are to behavior and attributes: an
encapsulation technique. Object naming provides a name space and the means to bind
objects together, manipulate object configurations and aid in the construction of com-
posite objects.

Our object model builds on the following object-oriented concepts [Graham,
1993]:

� Abstraction [Liskov et al., 1977] is the concept of grouping related objects
and focus on common characteristics. For example, a file is an abstraction of

15

disk blocks and a process is an abstraction of virtual to physical memory map-
pings, one or more threads of control, file control blocks, permissions, etc.
Abstractions are used to manage design complexity by allowing the designer
to focus on the problem at different levels of detail.

� Encapsulation [Parnas, 1972] or information hiding is closely related to
abstraction and hides implementation details of an object by concentrating on
its functionality. As a result encapsulation allows many different implementa-
tions that provide the same functionality.

� Delegation [Lieberman, 1986] is akin to inheritance [Wegner, 1987]. Inheri-
tance allows you to express an object’s behavior partially in terms of another
object’s behavior. Delegation is equivalent to inheritance but allows an object
to delegate responsibility to another object rather than inheriting from it.
Notice that there is a tension between inheritance, delegation and encapsula-
tion. Encapsulation hides the object instance state while inheritance and dele-
gation mechanisms reveal (part of) the instance state of an object to its subob-
jects. This is why some authors favor object compositioning over inheritance
[Gamma et al., 1995].

� Polymorphism [Graham, 1993] is the ability to substitute, at run time, objects
with matching interfaces. The mechanism for implementing polymorphism is
called late binding.

The main advantage of using an object model is that it facilitates the separation
of a system into subsystems with well-defined operations on them. This separation into
subsystems and defining their interdependencies enables the designer and developer of
a system to manage its complexity. The use of composite objects in our model allows
the otherwise fine-grained objects to be grouped into coarser-grained objects. A bene-
fit of well-defined independent subsystems and their interfaces is that they have the
potential of being reused in different systems.

One of our main goals was to define an object model that is language indepen-
dent. Hence our focus is on the run time aspects of the model. More formal issues like
unique object identifiers or object equality were explicitly left outside of the model.

The main thesis contributions in this chapter are the use of multiple named inter-
faces per object, the notion of composite objects and the use of an orthogonal name
space to provide flexibility and configurability.

2.1. Local Objects
Local objects are used to implement programs or components of programs such

as memory allocators, specialized run-time systems, or embedded network protocol
stacks. Local objects have multiple interfaces and are named in an object name space.
To amortize the cost of the overhead caused by interfaces and object naming, local
objects are relatively coarse-grained. For example, an integer is rarely a local object; a
thread package implementing many threads of control could be.

16 Object Model CHAPTER 2

Local objects are so called because they are confined to a single address space.
Unlike distributed objects, they do not span multiple address spaces, processes, or mul-
tiple machines. The reason for this is that distributed objects require much more func-
tionality than local objects. Adding this functionality to every local object would make
it very heavyweight (in run-time size and complexity) and most local objects do not
need to be distributed. Instead a local object can be turned into a distributed object by
placing it in a composition with other objects that implement the desired distribution
properties. The remainder of this section discusses local objects; distributed objects are
described extensively in Homburg’s thesis.

2.1.1. Interfaces
An interface is a collection of methods (or operations) on an object. Most object

models associate only one interface per object, which contains all the operations for
that object, but in our model we allow multiple interfaces. Each object can export one
or more named interfaces and each of these interfaces has a unique name associated
with it that describes its methods and semantics. The advantages of multiple interfaces
per object are:

� Plug compatibility. One of the main reasons to have multiple interfaces is to
allow plug compatibility. For example, consider a mail program that requires
a network connection to the mail server. The underlying transport does not
matter as long as it is stream based. If the mail program uses a generic stream
transport interface, any object exporting that interface can be used to provide
the transport service whether the transport protocol used is OSI TP4 or
TCP/IP. Another example is a thread package providing multiple threads of
control. Instrumenting this package with measurements and providing a
separate interface to access the measurement data allows the old package to be
substituted while its clients are unaware of the change.

� Interface evolution. Interfaces tend to evolve over time. For example, when
extra methods have to be added or a method signature needs to be changed.
With multiple interfaces it is straightforward to provide backward compatibil-
ity by providing the old interface in addition to the new interface.

� Structured organization. Objects can export many different operations for
different functional groups. Multiple interfaces allow these groups to be
structured. Consider a random number generator object. The interface con-
taining the operation to obtain random bit strings is very different from the
interface that is used by clients that provide the random number object with
sources of high entropy. In fact, the user of the random number data is not
concerned with the actual fabrication of it. Separating these two related but
different functions of the object aids in structuring the system.

The use of interfaces reduces the implementation dependencies between subsys-
tems. Clients should be unaware of the classes of objects they use and their implemen-

SECTION 2.1 Local Objects 17

tation as long as the objects adhere to the interface the client expects. This leads to one
of the principles of object-oriented design [Gamma et al., 1995]: Program to an inter-
face, not an implementation. Following this guideline allows subsystems to be
replaced, adapted or reused independent of their clients.

To support developers in defining their interfaces, we have designed our own
interface definition language (IDL) and a generator that takes an IDL description and
produces the appropriate definitions for a target language. Currently we support only
two target languages, C and C++, and the current IDL reflects that bias. Ideally an IDL
contains definitions that are self contained and are target language independent.
Recently such a language has been designed and implemented for Globe [Verkaik,
1998], however since it is incompatible with the existing one it is not yet used for
Paramecium.

An example of an interface definition in IDL is shown in Figure 2.1 (more exten-
sive examples are given in appendix A). This interface defines three methods alloc,
addr, and free. Each method’s signature contains a C/C++ like declaration, reflecting
its heritage. Each interface has two names associated with it. The internal name, in the
example physmem, is used within the IDL to refer to this interface and in the generated
output as a type definition. The external name following the equal sign after the last
closing bracket, 5 in this example, is the unique interface name. This name is imple-
mented as an extensible bit string and it is used by the client to request this particular
interface. This number is the unique name† for an interface and captures its signature
and semantics. It is used as a primitive form of type checking and chosen by the
developer of the interface.

typedef uint64_t resid_t; // resource identifiers
typedef uint32_t paddr_t; // physical addresses

interface physmem {
resid_t alloc(void); // allocate one physical page
paddr_t addr(resid_t ppage); // physical address
void free(resid_t ppage); // free page

} = 5;

Figure 2.1. Example of an IDL interface definition.

Each interface has associated with it a standard method that is used to obtain
another interface. Since it is included in every interface it is implicit in the IDL. This
special method has the following type signature:

void *get_interface(void *name, int options = 0);

� ���������������������������

†The unique name refers to a world-wide unique name. This is clearly important for the deployment of
this model for a large scale distributed system such as Globe.

18 Object Model CHAPTER 2

This method allows the client to access different interfaces from a given interface it
already holds. Note that our model does not have the notion of an object handle from
which interface pointers can be obtained. That approach would require the program-
mer to maintain two references to an object: the object handle and the interface pointer.
Our approach requires only one reference; this simplifies the bookkeeping for the pro-
grammer. The options argument to get_interface allows the client to enumerate all the
available interfaces and is mainly used for diagnostic purposes.

Our object model defines a number of standard interfaces. One of them is the
standard object interface. This interface, shown in Figure 2.2, is supported by all
objects and is used to initialize or finalize the object.

Creating a new object is explained fully in the next section and one of the steps
involved is to initialize the object. This is done by invoking the init method from the
standard object interface. Initialization allows the object implementation to create or
precompute its data structures. The initializer is passed as argument its node, called a
naming context, in the object name space. The object name space is further explained
in Section 2.1.3. This argument is used to locate other objects although the object, by
convention, is not allowed to invoke methods on other objects during initialization,
other than those contained in the standard object interface. The cleanup method is
invoked prior to destroying the object and gives the object a chance to cleanup its own
data structures.

� ���

Method Description� �� ���

init(naming_context) Initialize object
� ���

cleanup() Finalize object
� ���
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 2.2. Standard object interface.

In addition to the standard object interface a number of other interfaces exist.
These interface are optional. One example of such an interface is the persistence inter-
face. This interface allows an object to serialize its data structures and save them on to
persistent storage or reconstruct them by reading them from storage. When an object
does provide a persistent interface it is invoked after the initialization to reconstruct the
data structure or before finalization to save its data structures. The persistent interface
is used by the map operation.

The run time representation of a standard object interface is shown in Figure 2.3.
Each object implementation contains a set of template interfaces out of which the
actual interfaces are constructed. The interface templates are identified by their inter-
face name. Each template includes a table with method pointers and their type infor-
mation. The method pointers refer to the functions implementing the actual methods.

SECTION 2.1 Local Objects 19

Number of

methods

Standard object interface

Reference to

method pointer table
Reference to

state pointer table
Reference to

method type table

get_interface

Method pointer table

init

cleanup

my object

State pointer table

my object

my object

(void *, int)

Method type table

(nsctx_t)

(void)

Figure 2.3. Interface implementation and its C definition.

The method type table consists of a rudimentary description of the method’s type sig-
nature. This information can be used for the dynamic generation of proxy interfaces or
to assist symbolic debuggers. Pebble [Gabber et al., 1999], an extensible OS, uses a
similar type representation to generate dynamic proxies between processes. In our sys-
tem, the signature is stored in an array where each element represents the type for the
corresponding method argument. Each element contains a type identifier (i.e., 1 for
char, 2 for unsigned char, 3 for short, etc.), and a size for aggregate types.

The method pointer table and the method type table in the template are shared
between all the same interfaces that use the same object implementation. The interface
itself consists of pointers to these two tables (as show in the structure definition in Fig-
ure 2.3) and a pointer to a table with state pointers. Each method has associated with it
its own state pointer; this unusual arrangement is required for composite objects. The
state pointer table is unique for each interface.

The IDL compiler generates interface stubs that are used in the programs. For
example, for C++ programs the IDL generator maps interfaces onto classes. This
allows the programmer to invoke a method by calling a C++ method on the interface
that is represented by a C++ class. When a program invokes the init method, the stub
will take the current interface pointer and selects from the first slot of the method table
the address of the method. This method is then called with the object state pointer con-

20 Object Model CHAPTER 2

tained in the first slot of the state table. This state parameter is followed by optional
additional parameters. For C programs the IDL generator maps interfaces onto struc-
tures and uses macro definitions to hide the peculiarities of their method invocations.

The method type information serves a number of purposes. Its primary use is to
assist the automatic generation of proxy interfaces. Proxy interfaces are used to com-
municate with interfaces in different address spaces. The type information is also used
by debuggers to decode the arguments passed over method invocations and by trace
tools to instrument the interfaces.

2.1.2. Objects and Classes
An object is an encapsulation of an instance state and methods operating on that

state. In our model, objects are passive; that is, they do not contain one or more
embedded threads of control. Objects are also not persistent, although that does not
exclude making them persistent through other mechanisms.

The object state is stored in a memory segment that is identified by its base
pointer. This pointer is commonly known as the state pointer. All accesses to the
object’s state are relative to this state pointer. The state pointer is stored in the inter-
face as described in the previous section and is passed implicitly as the first parameter
to each method invocation. Decoupling the object state from its methods allows the
method implementation to be shared among multiple object instances. In fact, all the
methods for each object are contained in a class object specific to that object.

In our model a class is a template from which instances of objects are created. A
class contains the implementation of the object methods. Consequently each object
belongs to a class. A class is a first-class object. That is, the class is itself an object
obeying all the rules associated with objects. For instance, a class object is in turn an
instance of a class. To break this recursion an artificial super class exists that imple-
ments the creating of class instances (that is, map and relocate the implementation in
the class).

Each class object provides an interface, called the standard class interface (see
Figure 2.4). This interface contains methods to create and destroy objects of that class.
To create an object the create method of its class is invoked with two parameters, The
parameters describe the location of the new object in the object name space. The first
parameter contains the directory and the second the symbolic name under which it is
registered (see Section 2.1.3 for more details).

The value associated with the registered name is the new object’s standard object
interface. This interface and the object state are created by the invocation of the class
its create method. After the name is registered the object initialization method is
invoked. It is up to the object implementation to prevent race conditions resulting from
calling other methods before the initialization has completed.

A class may contain variables that are embedded in the class state. These are
known as class variables and are shared among all objects of that class. They are use-
ful for storing global state such as: list of allocated objects and global measurement

SECTION 2.1 Local Objects 21

� ���

Method Description� �� ���

interface_soi = create(naming_context, name) Create a named instance
� ���

destroy(interface_soi) Destroy an instance
� ���
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�

Figure 2.4. Standard class interface.

data. Classless objects, also known as modules, combine the implementation of class
and object instance into one unit. These modules are useful in situations where there is
only one instance of the object; for example: device drivers, memory allocators, or spe-
cialized run-time systems.

Our object model does not support class inheritance but does provide a form of
delegation. Class inheritance allows one class to inherit properties from another
(parent) class. Delegation refers to the delegation of responsibility of performing an
operation or finding a value. Wegner [Wegner, 1987] argues that inheritance is a sub-
class of delegation and that delegation is as powerful as inheritance.

Superclass

Class

Object

Inheritance

Ancestor

object

Object

Delegation

Figure 2.5. Class inheritance vs. object delegation.

The difference between inheritance and delegation is shown in Figure 2.5. Key
to delegation is that the self reference, i.e., the pointer to the object itself, in an ancestor
dynamically refers to the delegating object. The delegated object thereby extends the
self identity of the ancestor. In our object model two different kinds of delegation are
possible. One where state is shared between the delegating object and one where it is
not. In the latter case the delegated method refers to a method and state pointer of the
ancestor. When state is shared the ancestor’s state is included in the delegating object

22 Object Model CHAPTER 2

state and the state pointer in the delegated method refers to this state rather than the
ancestor state. This is similar to the implementation of single inheritance [Lippman,
1996]. The disadvantage of this mechanism is that it requires the ancestor to reveal its
implementation details to the delegating object.

To aid program development object definitions are expressed in an object defini-
tion language (ODL). This language is analogous to the interface definition language.
In fact, the IDL is a proper subset of the ODL. The ODL enumerates for each object
the interfaces it exports with the names of the routines implementing each method. The
ODL generator produces a templates in C or C++ for the listed interfaces and the
get_interface methods that are used by the object implementation. The implementor of
the object is required to supply only the method implementations.

2.1.3. Object Naming
Run-time object instances can locate each other through a name space. This

name space has a hierarchical organization and contains for each object a symbolic
name and its object reference. This reference consists of one of the object’s interface
pointers, usually its standard object interface. The name space is a directed tree where
each node is labeled with a symbolic name. Every leaf node has an object reference
associated with it. For interior nodes this is optional since these nodes may act as place-
holders for the name space hierarchy rather than object instance names.

Each object has a path from the root of the tree to the object itself. Two kinds of
path names exist: absolute names and relative names. Absolute names start from the
root and name each interior node that is traversed up to and including the object name.
The node names are separated by a slash character, ‘‘/’’, and the root is identified by a
leading slash character. Relative names, that is those that do not begin with a slash
character, start from the current node in the tree. By convention the special name ‘‘..’’
refers to the parent node. This path name mechanism is similar to the naming rules
used in UNIX [Ritchie and Thompson, 1974].

An example of a path name is /program/tsp/minimum . This name refers to a
shared object that maintains the current minimum for a traveling salesman (TSP) prob-
lem. By convention, program refers to a node under which all currently executing pro-
grams are located. This node does not have an object associated with it. The tsp node,
also an intermediate node, does have an object associated with it representing the TSP
program. All objects created by that program are registered relative to its parent node,
like the node minimum in this example.

The process of locating an object and obtaining an interface pointer to it is called
binding and is performed by the bind operation. A bind operation always refers to an
existing object instance that is already registered in the name space. New objects can
be added to the name space either through creating and registering them or loading
them from persistent storage. Loading a new object from persistent storage is per-
formed by the map operation. For example, the TSP program mentioned above was
loaded from a file server using this map operation. Obtaining the measurement data

SECTION 2.1 Local Objects 23

from the minimum object consists of binding to the object and retrieving the data using
an appropriate interface.

The example above briefly outlines one of the uses of the object instance name
space. The four most important reasons for an explicit object name space that is
orthogonal to the objects are:

� Extensibility. The name space is the key mechanism for providing extensibil-
ity. That is, the ability to dynamically add new or adapt existing services.
Since all objects refer to each other through the name space, the operation of
changing a name to refer to a different object with similar interfaces replaces
an existing service. To facilitate reconfiguration, the name resolution that is
part of bind has search rules associated with it. When an object binds to a
relative name the name is first resolved using the current node in the tree. If
this fails, the name is resolved starting from the parent node. This is applied
recursively until the root of the tree is reached. By convention the generic ser-
vices are registered at the top level of the tree and application specific ones in
interior nodes closer to the objects that use them. This scoping allows fine-
grained control over the replacement of services.

� Interpositioning. Another powerful use of the name space and its search rules
is that of object interpositioning [Jones, 1993]. Rather than binding to the
object providing the actual service, a client binds to an interposing object that
from an interface point of view is indistinguishable from the original object.
The interposing object can enhance the service without the service implemen-
tation being aware of it. Examples of these enhancements are the addition of
cache objects which cache queries and results to the actual service, or trace
and measurement objects which keep statistics on the number of invocations
to the actual service, or load balance objects that forward the request to the
service with the lightest job load, etc.

� Protection. It is straightforward to extend the name space to multiple trees
and confine an object to a single one. If the trees are separated into multiple
hardware protection domains it is impossible for an object in one domain to
bind to names in another domain. This is the case in the Paramecium kernel.
Each protection domain has its own name space in which the services imple-
mented by the kernel are registered. Which services are available depends on
a separate security policy that is defined outside the object model; each pro-
tection domain starts with an empty name space tree and is populated based
on this policy. For example, if the name space does not have an entry for the
controlling terminal the objects contained in that protection domain cannot
write onto their console. Similar, if the name space holds no file server refer-
ence it cannot perform file system operations (see Section 3.4.5 for a more in
depth description of protection).

24 Object Model CHAPTER 2

� Name Resolution Control. The hierarchical name space structure and search
rules help to control and restrict the name resolution which is part of the bind
operation. This is especially useful in composite objects where these two
mechanisms are used to control the location of objects comprising the compo-
site object.

In addition to the map and bind operations, other operations exist to manipulate
the object name space. These are: register, alias, delete, and some additional opera-
tions to traverse the name space. The register operation takes a name and an object
reference and registers it in the name space. Alias takes two names of which the first
name exists in the name space and creates a link to the second name. The delete opera-
tion removes a name from the object name space.

The organization of the object name space is largely dictated by conventions, as
can be seen in Figure 2.6. This figure shows the name space listing for a single user
process running on Paramecium. In this particular instance the process has its own
instantiation of a thread package, counter device driver, memory allocator and a shell
program. These are all colocated in the same address space.

By convention all program-related objects are stored under the /program node
including service objects that are specific to the program. In this example the threads
package is stored under /program/services/threads. When the shell program
/program/shell binds to services/threads the search rules will first look up the name in
the directory in which the shell program is situated. In this case it would resolve to
/program/services/threads. If it was not found the system would have tried to resolve
the name in the parent directory, in this case the root of tree before announcing a look
up failure.

The thread package itself consists of a number of objects of which each imple-
ments certain aspects of the thread system. For example, glocal implements per thread
data, and sema implements counting semaphores. The interfaces from all these subob-
jects are exported by the /program/services/threads object. The counter device which
provides the timer events that are required for implementing preemptive threads is
registered as /program/devices/counter. Here the same search rules apply as before. In
order for /program/services/threads to bind to devices/counter the system tries to
resolve the name in the /program/services directory. When this fails, the directory
/program is used to successfully resolve the name.

As is clear from the example, the hierarchical object name space and the search
rules for name resolution introduce a scoping concept of objects that is similar to find-
ing variables in Algol-like languages that allow nested blocks [Backus et al., 1960].
First you start within the closest surrounding block, if it is not found you proceed to the
parent block. This scoping enables us to enhance existing services and override the
binding to them by placing them in a scope closer to the client of the service. A
hierarchical name space with these scoping rules allow fine grained control, per indivi-
dual object, over the binding process. A single flat name space allows only control

SECTION 2.1 Local Objects 25

� ���

Object names Description� �� ���

/ Root context
� ���

/program Executing program context

/program/shell Shell program

/program/services Services confined to /program

/program/services/threads Thread package

/program/services/threads/thread Threads

/program/services/threads/glocal Per thread data

/program/services/threads/mutex Locks

/program/services/threads/cond Condition variables

/program/services/threads/sema Countable semaphores

/program/services/allocator Memory allocator

/program/devices Devices confined to /program

/program/devices/counter Counter device driver
� ���

/services System wide services

/services/fs File system

/services/random Random number generator
� ���

/nucleus Kernel services

/nucleus/devices Device manager

/nucleus/events Event manager

/nucleus/virtual Virtual memory manager

/nucleus/physical Physical memory manager

/nucleus/chains Invocation chains management
� ���

/devices System wide devices

/devices/tty Console
� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2.6. Object name space hierarchy.

over all object bindings and is therefore less desirable. By convention, absolute names
should not be used in bind operation since they prevent the user from controlling the
name resolution process.

An example of a system-wide name is /services/fs, which is the object that gives
access to the file server. The services exported by the kernel (i.e., system calls) are
registered under /nucleus to distinguish them from nonkernel services. These names
do not refer to object instances within the process its address space but are links to
interfaces in the kernel. The Paramecium kernel detects binds to kernel interfaces and
automatically creates proxies for them (see Section 3.4.5). The controlling terminal for
this process is registered under /devices/tty and points to an interface from a device
driver object.

26 Object Model CHAPTER 2

2.1.4. Object Compositions
Object compositioning is a technique for dynamically encapsulating multiple

objects into a single object. The resulting object is called a composite object . Exter-
nally composite objects exhibit the same properties as primitive objects. That is, they
export one or more named interfaces and the client of the object is unaware of its
implementation. A composite object is a recipe that describes which objects make up
the composition and how they are interconnected. Composite objects are recursive in
that a composite object may contain subobjects that are in turn composite objects.

Composite objects are akin to object-oriented frameworks [Deutsch, 1989]. An
object-oriented framework defines a set of classes, their interactions, and a description
of how the class instances are used together or how they are subclassed. A framework
is a concept that defines the architecture of the application and is supported by a sub-
class hierarchy. Frameworks are a top-down class structuring concept, whereas com-
posite objects are a bottom-up object grouping mechanism with an actual run time real-
ization.

A composite object is also different from an aggregate object in that the subob-
jects are created dynamically and the binding to subobjects is controlled by the compo-
site. An aggregate object on the other hand usually refers to the notion of combining
object types in a static way [Gamma et al., 1995].

The two key issues for composite objects are:
� The construction of external interfaces and the delegation of methods to inter-

nal objects.
� Controlling the name resolution within a composite object.

The methods in the interfaces of a composite object are delegated to the methods
of its internal objects. Hence the explicit presence of the state pointer in the interface
(see Section 2.1.2). This state pointer identifies the internal object state without reveal-
ing that state to the user of the composite object. The construction of the composite
object and its interfaces occurs through the composite constructor.

INIT(composite naming context):
for obj in subobjects {

manufacture object obj
register name of obj in name space

(relative to composite naming context)
}
for obj in subobjects {

invoke obj.INIT(object’s naming context)
}
create external interfaces

Figure 2.7. Run-time support for constructing a composite object.

SECTION 2.1 Local Objects 27

The implementation of a composite object consists of a composite constructor
and a list of subobjects that comprise the composite object. The composite constructor,
shown in Figure 2.7, first manufactures all the subobjects and registers their instance
names into the object name space. Their names, the object naming contexts, are
registered relative to the node where the composite object was created. As a result,
other subobjects that bind to a name will locate the names in the composition first
before finding objects that are implemented outside of it. After manufacturing and
registering all the subobjects their individual initialization methods are invoked with as
argument their naming context. When a subobject is in turn a composite object, this
process is repeated.

How the internal objects are manufactured is left to the constructor implementa-
tion: some objects are newly created, some are dynamically loaded from a file server,
and some already exist and are bound to. After all subobjects have been created and
registered, their individual initialization methods are called. Remember that objects
may bind to other objects during this initialization but not invoke methods on them.
This prevents race conditions during the initialization stage. To which interfaces (if
any) the subobjects bind is left to their implementation. The name space search
mechanism guarantees that interfaces to subobjects within the composition are found
first, unless the name does not exist within the composition or is an absolute name.
When all internal objects are initialized the composite constructor creates all the exter-
nal interfaces with delegations to the internal object’s methods.

To illustrate the use of a composite object consider the example in Figure 2.8. In
this, oversimplified because it leaves out locking and revocation, example a client file
system object that gives access to a remote file server is extended with a file cache to
improve its performance. The resulting file system object with client caching is used
by the application instead of the direct access file system object. The new object only
caches the actual file content, file meta data, e.g., access control lists, length, modifica-
tion time, etc., is not cached.

Figure 2.8 shows the composite object after it has been manufactured by the
composite constructor. The constructor manufactured the file system and cache object
by locating the existing file server and binding to it and by creating a new instance of a
file cache object. Both these names were registered in the name space directory of the
composition so that the cache object could locate the file server object. The cache
object exports a file I/O interface which is different from the file system interface and
only contains the open, read, write, and close methods. The open method prepares the
cache for a new file and possibly prefetches some of the data. Read requests are
returned from the cache if they are present or requested from the file server and stored
in the cache before returning the data. Write operations are stored in the cache and
periodically written to the file server. A close flushes unwritten data buffers to the file
server and removes the bookkeeping information associated with the file.

After initializing both objects, the constructor creates a new file system interface
by combining the interface from the original file system and the interface from the

28 Object Model CHAPTER 2

Cache file system (composite) object

(code)

Cache class

File system class

(code)

(instance data)

Cache object

File system object

Internal interface

Internal interface

External interface

open
read
write
close
stat

External interface

(instance data)

Figure 2.8. Composite object for caching file system.

cache object. The constructor takes the open, read, write, and close methods and their
state pointers from the cache’s file I/O interface and stores them into the new file sys-
tem interface. The method and state pointer dealing with file meta data, stat, is
delegated directly to the original file system implementation. It is up to the implemen-
tor of the constructor to ensure that when combining interfaces the signature and
corresponding semantics of each method are compatible. The constructor may assist
by inserting small stub routines that convert or rearrange arguments. It is important
that the composite object does not add functionality to the resulting object. Composite
objects are only a mechanism for grouping existing objects, controlling their bindings
and combining their functionality.

The object names and their interfaces relevant to this composition appear in Fig-
ure 2.9. By convention class instances appear under the directory called classes. In
this example there are three classes: fs contains the implementation for objects that
give access to the remote file server, cfs is the class for the composite object that
implements a remote file system client with client caching, and cache implements a
caching mechanism. Instances of these classes are registered under the directory called
services.

SECTION 2.1 Local Objects 29

� ���

Name Description� �� ���

/classes/fs File server class

/classes/cfs Cache file server class (composite object)

/classes/cache Cache class
� ���

/services/fs File server object

/services/cfs Cached file server object (external interface)

/services/cfs/fs Link to /services/fs (internal interface)

/services/cfs/cache Cache object
� ���

/program/browser An application

/program/services/fs Link to /services/cfs
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 2.9. Object name space for caching file system.

Composite objects are a directory in the object name space rather than a leaf.
This directory contains the names of the subobjects that make up the composition.
These are the names that other subobjects may expect to find. If a subobject is not part
of the composition the name search rules apply. The composite constructor manages
the interfaces exported by the composite object and attaches them to the composite
object name which also doubles as the directory name for all its subobjects. Programs
that use the composite object bind to its name instead of the subobject names.

The application is stored in the directory program together with a link to the
cache file system. The search rules guarantee that when an application binds to
services/fs it will find the extended one by following the link to it. Registering the new
file system service under /program makes it the default for the application and all its
subobjects. Registering it as /services/fs (i.e., in the root) would make it the default for
any objects in the tree.

As is shown in the example above, the internal structure of the composite object
is revealed through the object name space. This is a deliberate choice even though it
goes against the encapsulation properties of the object. The reason for doing so is to
provide assistance for diagnostics and debugging.

2.2. Extensibility
The motivation behind the object model is to provide the foundation for extensi-

ble systems. More specifically, it is the foundation for the extensible operating system
described in this thesis and the local object support for Globe. The three extension
mechanisms provided by our model are:

� Objects as unit of granularity.

30 Object Model CHAPTER 2

� Multiple interfaces per object.
� Controlled late binding using an object name space.

Objects form the units of extensibility. These units can be adapted or replaced
by new objects. Multiple interfaces provide us with different ways of interacting with
objects enabling plug compatibility and interface evolution. The name space controls
the late binding of objects and provides extensibility, interpositioning, protection, and
name resolution control.

It is important to realize that although our system is extensible, it is static with
respect to the interfaces. That is, anything that cannot be expressed within the scope of
the current set of interfaces cannot be extended. For example, interposing an object
and providing caching for it only works when the object interface provides enough
semantic information to keep the cache coherent. Another example is a thread imple-
mentation that does not provide thread priorities. Adding these to the package requires
extra methods to set and get the priorities. A client cannot benefit from these modifica-
tions unless it is changed to accommodate the new interface.

These limitations are inherent to our extensible system. The extensions are res-
tricted to adapting or enhancing existing services as expressed in the object’s inter-
faces. Adding new services which are not anticipated by the client are beyond the
capabilities of our extension mechanism or any other for that matter.

A curious application of extensible systems is that of enhancing binary only sys-
tems to specific application needs. This is especially useful for adapting operating sys-
tems like Windows NT or UNIX, which are distributed in binary form.

2.3. Discussion and Comparison
The first seminal works on object-oriented programming are probably Dahl and

Nygaard on SIMULA 67 [Dahl and Nygaard, 1966], Ingals on Smalltalk 76 [Ingals,
1978], Hewitt on Actor languages [Hewitt, 1976], and Goldberg and Robson on
Smalltalk 80 [Goldberg and Robson, 1983]. Object-oriented programming really hit
the mainstream with the introduction of C++ [Stroustrup, 1987], a set of extensions on
the popular C [Kernighan and Ritchie, 1988] language.

It was soon realized that the object-oriented programming paradigm has a much
wider applicability than within a single language and can be used to interconnect dif-
ferent programs or subsystems. These could be written in different languages or even
run on different systems. Hence the development of object models such as OMG’s
CORBA [Otte et al., 1996], Microsoft’s object linking and embedding (OLE) which
was followed by their Component Object Model (COM) [Microsoft Corporation and
Digital Equipment Corporation, 1995] and its networked version Distributed Com-
ponent Object Model (DCOM).

Our object model has a number of similarities with the models mentioned above.
For example, CORBA and our model both use interface definition languages and allow

SECTION 2.3 Discussion and Comparison 31

multiple interfaces per object. OLE and our model both share the dynamic loading
capabilities which is akin to shared libraries [Arnold, 1986]. Object instance naming
and composite objects are unique to our model. The reason for this is that aforemen-
tioned object models focus on the distribution of objects between multiple address
spaces rather than the local binding and control issues.

Although the interface definition language we use in this thesis does not reflect
this, we share the view with COM that the IDL is language independent and only
defines a binary interface. This is unlike CORBA, where each Object Request Broker
(ORB) vendor provides a language binding for its ORB and supported languages.
These bindings provide the marshaling code to transform method calls to the ORB
specific calling conventions.

Paramecium is not the only operating system to use an object model. Flux [Ford
et al., 1997], an operating system substrate developed at the university of Utah, uses an
object model that is a subset of COM. OLE/COM is the object model of choice for
Microsoft’s Windows NT [Custer, 1993]. Our reason for developing a new model
rather than a subset of an existing one, like Flux does with COM, is that we preferred to
explore new ideas rather than being restricted to an existing object model.

Delegation is due to Lieberman [Lieberman, 1986] where it is used as a separate
mechanism from inheritance. Wegner [Wegner, 1987] on the other hand views inheri-
tance as a subclass of delegation. Self [Ungar and Smith, 1987] is an object-oriented
language strongly influenced by Smalltalk that explored prototypes and delegation as
alternatives to classes and inheritance. Our ideas of a classless object model and the
use of delegation were inspired by Self.

Even though the object model supports some notion of a class it is largely unused
in Paramecium. Instead, much more emphasis is placed on its component and module
concepts where in classes and objects are combined. The motivation for this is that in
an operating system there are not many instances of coarse-grained objects. For exam-
ple, there is only one instance of a program, one instance of a thread package, and one
instance of the network driver or TCP/IP protocol stack. Operating systems like Flux
and Oberon [Wirth and Gütknecht, 1992] also use the module concept rather than the
pure object concepts. The reason for introducing a class notion is due to Globe where
there are multiple instances of particular classes.

The use of an orthogonal name space to register run-time object instances is
novel although somewhat reminiscent of Plan 9’s name space [Pike et al., 1995] and
Amoeba’s directory server [Van Renesse, 1989]. These are used to register services on
a per process or system basis. Our object naming is per object instance where each
instance controls its late binding through search rules in the name space.

Composite objects are a structuring mechanism for combining cooperating
objects into an object that is viewed as a single unit by its clients. Related to composite
objects are frameworks. These have been used to create a reusable design for applica-
tions, and have been applied to system programming in Choices [Campbell et al.,
1987; Campbell et al., 1991]. However, both are very different. Composite objects are

32 Object Model CHAPTER 2

a bottom-up grouping mechanism while object-oriented frameworks are a top-down
class structuring mechanism.

Notes
The object model research presented in this chapter is derived from work done in col-
laboration with Philip Homburg, Richard Golding, Maarten van Steen, and Wiebren
de Jonge. Some of the ideas in this chapter have been presented at the first ASCI
conference [Homburg et al., 1995] and at the international workshop on object orien-

tation in operating system (IWOOOS) [Van Steen et al., 1995].

SECTION 2.3 Discussion and Comparison 33

3

Kernel Design for Extensible Systems

The task of an operating system kernel is to provide a certain set of well defined
abstractions. These, possibly machine independent, abstractions are used by applica-
tion programs running on top of the operating system. In most contemporary operating
systems these abstractions are fixed and it is impossible to change them or add new
ones†. This makes it hard for applications to benefit from advances in hardware or
software design that do not fit the existing framework. Consider these examples: user
level accessible network hardware does not fit well in existing network protocol stacks;
a data base server cannot influence its data placement on a traditional file server to
optimize its data accesses; applications that are aware of their virtual memory behavior
cannot control their paging strategy accordingly.

This problem appears in both monolithic systems and microkernel systems. In
monolithic systems, the size and complexity of the kernel discourages adapting the sys-
tem to meet the requirements of the application. In fact, one of reasons of the tremen-
dous increase in size of these systems is due to adding functionality specific to many
different groups of applications. A typical example of this is UNIX: It started as a
small system, but the addition of networking, remote file access, real time scheduling,
and virtual memory resulted in a system a hundred fold the size and complexity of the
original one. To illustrate the rigidness of these systems, one vendor explicitly prohi-
bits their source license holders from making modifications to the application binary
interface.

For microkernel systems the picture is better because most of the services typi-
cally found in the kernel for a monolithic system (e.g., file system, virtual memory, net-
working) reside in separate user processes. But even here it is hard to integrate, for
example, user accessible hardware that requires direct memory access (DMA) into the
existing framework. The most obvious implementation requires a new kernel abstrac-

� ���������������������������

†The unavailability of source code for most commercial operating systems only exacerbates this prob-
lem.

34

tion that exports the DMA to a user level application in a safe manner. Other advances
might result in adding even more abstractions, this clearly violates the microkernel phi-
losophy.

Another reason to be suspicious of operating systems that provide many different
abstractions is their incurred overhead for applications. Applications suffer from loss
of available CPU cycles, less available memory, deteriorated cache behavior, and extra
protection domain crossings that are used to implement these abstractions. These costs
are usually independent of the usage patterns of the applications. For example, applica-
tions that do not use the TCP/IP stack still end up wasting CPU cycles because of the
amount of continuous background processing required for handling, for example,
ICMP, ARP, RARP, and various broadcast protocols.

The problems outlined above all have in common that they require an application
to have access to the kernel’s internal data structures and to be able to manipulate them.
This raises the following key question:

What is the appropriate operating system design that exposes kernel infor-
mation to applications and allows them to modify it in an efficient way?

This question has been answered by various researchers in different ways, but
each evolves around some sort of extensible operating system. That is, a system that
enables applications to make specific enhancements to the operating system. These
enhancements, for example, can consist of application specific performance improve-
ments or add extra functionality not provided by the original system.

The mechanisms for building these operating systems range from using an ordi-
nary kernel with sophisticated procedure call extension mechanisms to systems that
provide raw access to the underlying hardware and expect the application to implement
its services. In this chapter we describe our own extensible operating system, Parame-
cium , its design rationale, implementation details, and strengths and, weaknesses.

Paramecium is a highly dynamic nanokernel-like system for building application
specific operating systems, in which applications decide at run time which extensions
to load. Central to its design is the common software architecture described in the pre-
vious chapter, which is used for its operating system and application components.
Together these components form a toolbox. The kernel provides some minimal support
to dynamically load a component out of this toolbox either in the kernel or a user
address space and make it available through a name space. Determining which com-
ponents reside in user and kernel space is established by the application at execution
time.

The main thesis contributions in this chapter are: A simple design for a versatile
extensible operating system, a preemptive event driven operating system architecture, a
flexible naming scheme enabling easy (re)configuration, a secure dynamic loading
scheme for loading user components into the kernel, and a high performance cross
domain invocation mechanism for SPARC RISC processors.

CHAPTER 3 Kernel Design for Extensible Systems 35

3.1. Design Issues and Choices
Paramecium was developed based on our experiences with the kernel for the dis-

tributed operating system Amoeba [Tanenbaum et al., 1991]. Paramecium’s design
was explicitly driven by the following design issues:

� Provide low-latency interprocess communication.
� Separate policy from mechanism.
� Securely extend the kernel’s functionality.

Low latency interprocess communication (IPC) between user processes, includ-
ing low latency interrupt delivery to a user process, was a key design issue. Most con-
temporary operating systems provide only very high latency IPC. To get an impression
of these costs consider Figure 3.1. This table contains the null system and context
switch costs for a variety of operating systems (obtained by running lmbench [McVoy
and Staelin, 1996]). Although not directly related, these two operations do give an
impression of the basic IPC cost since an IPC involves trapping into the kernel and
switching protection domains. The IPC operation itself only involves a user to supervi-
sor transition, not a context switch because on UNIX the kernel is mapped into each
address space.

Ousterhout [Ousterhout, 1990] made an interesting observation in noting that the
cost of these operations does not scale very well with the increase in processing power.
For example, compared to the SPARCClassic a 275 MHz Alpha is 5.5 times faster but
the system call performance is only 3.1 times faster. Ousterhout attributed this to the
cost of hardware context switches.

� ���

Hardware platform Operating sys-

tem

CPU speed

(MHz)

Null system

call (µsec)

Context switch

(µsec)� �� ���

Digital Alpha OSF1 V3.0 275 12 39
� ���

Digital Alpha OSF1 V3.2 189 15 40
� ���

SGI O2 IRIX 6.3 175 9 18
� ���

Sun Ultra 1 Solaris 2.5 167 6 16
� ���

Intel Pentium FreeBSD 2.1 133 9 24
� ���

Sun SPARCStation 5 Solaris 2.5 110 11 74
� ���

Sun SPARCClassic Solaris 2.6 50 37 168
� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.1. Null system call and context switch latencies.

Low latency IPC is especially important for modular operating systems, such as
Amoeba, Mach [Accetta et al., 1986], and LavaOS [Jaeger et al., 1998], that use
hardware protection to separate operating system services. As shown in Figure 3.1 the

36 Kernel Design for Extensible Systems CHAPTER 3

cost of these operations is high while conceptually the operations are simple. For
example, a local RPC consists of trapping into the kernel, copying the arguments,
switching contexts, and returning from the kernel into the other process. At first glance
this does not require many instructions. Hence the question why are these latencies so
high?

As Engler [Engler et al., 1995] pointed out, contrary to the high hardware context
switch overhead, a major reason for this performance mismatch is the large number of
extra operations that must be performed before the actual IPC is executed. These extra
operations are the result of abstractions that are tagged onto the basic control transfer.
Abstractions like multiple threads of control, priorities, scheduling, virtual memory,
etc. For example in Amoeba, a system call consists of a context switch, saving the
current registers and the MMU context, setting up a new stack and calling the desired
routine. When this routine returns, the scheduler is invoked, which checks for queued
high-level interrupt handlers (for example clock, network, disk, serial line interrupts).
If any of these are queued they are executed first. Then a round-robin scheduling deci-
sion is made after which, if it is not blocked, the old registers and the MMU context are
restored and the context is switched back to the original user program.

Engler argues that to overcome this performance mismatch, it is important to
separate policy from mechanism. Given our Amoeba example above, this comes down
to separating the decision to schedule (policy) from the cross protection domain
transfer (mechanism). Just concentrating on the pure cross protection domain transfers
Engler was able to achieve latencies of 1.4 µsecs on a 25 MHz MIPS processor [Engler
et al., 1995].

Furthermore, Engler argues that these policies are induced by abstractions and
that there is often a mismatch between the abstractions needed by a program and the
ones provided by operating system kernels. For example, an expert system application
that wants to implement its own virtual memory page replacement policy is unable to
do so in most operating systems since the replacement policy is hardwired into the
operating system. Apart from this, existing abstractions are hard to modify and add a
performance overhead to applications that do not require it.

For example, applications that do not require network services still end up paying
for these abstractions by degraded performance, less available memory, and more com-
plex and therefore error prone systems. Hence, Engler argues that an operating system
should provide no abstractions and only provide a secure view of the underlying
hardware. Although we disagree with this view (see Section 3.6) we do agree with
their observation that the kernel should contain as few abstractions and policies as pos-
sible.

We feel, however, that rather than moving services and abstractions out of the
kernel there is sometimes a legitimate need for moving them into the kernel. Examples
of this are Amoeba’s Bullet file server [Van Renesse et al., 1989], Mach’s NORMA
RPC [Barrera III, 1991], and the windowing subsystem on Windows NT [Custer,

SECTION 3.1 Design Issues and Choices 37

1993]. These services were moved into the kernel to improve their performance. Ordi-
narily there are three reasons for moving services or parts of services into the kernel:

� Performance.
� Sharing and arbitration.
� Hardware restrictions.

Performance is the most common reason. For example, the performance of a
web server is greatly improved by colocating it in the kernel address space. This elim-
inates a large number of cross domain calls and memory copies. On the other hand,
techniques such as fast IPC [Bershad et al., 1989; Hsieh et al., 1993; Liedtke et al.,
1997] and clever buffer management [Pai et al., 2000] greatly reduce these costs for
user-level applications and argue in favor of placing services outside of the kernel.
However, these fast IPC numbers are deceiving. Future processors, running at
gigahertz speeds, will have very long instruction pipe lines and as a result have very
high latency context switching times. This impacts the performance of IPC and thread
switching and argues again for colocation.

The other reasons for migrating services into the kernel is to take advantage of
the kernel’s sharing and arbitration facilities. After all, resource management is one of
the traditional tasks of an operating system. An example of such a service is IPC
redirection [Jaeger et al., 1998]. IPC redirection can be used to implement mandatory
access control mechanisms or load balancing.

Finally, the last reason for placing services in the kernel address space is that
they have stringent timing constraints or require access to privileged I/O space or
privileged instructions that are only available in supervisor mode. In most operating
systems only the kernel executes in supervisor mode. Examples of these services are
device drivers or thread packages.

Even though we think that there are good reasons for placing specific services in
the kernel, as a general rule of thumb services should be placed in separate protection
domains for the following reasons: fault isolation and security . Hardware separation
between kernel and user applications isolates faults within the offending protection
domain and protects others. From a security perspective, the kernel, the trusted com-
puting base, should be kept as minimal as possible. A trusted computing base is the set
of all protection mechanisms in a computing system, including hardware, firmware,
and software, that together enforce a unified security policy over a product or system
[Anderson, 1972; Pfleeger, 1996].

Extending a kernel is not without risk. The extensions should not be malicious or
contain programming errors. Since the kernel has access to and manages all other
processes, a breach of security inside the kernel is much more devastating than in a
user program. The issues involved in extending the kernel securely are discussed
extensively in Section 3.3.

38 Kernel Design for Extensible Systems CHAPTER 3

The design issues outlined above resulted in the following design choices for
Paramecium:

� A modular and configurable system.
� A module can run in either kernel or user mode.
� A kernel extension is signed.
� An event driven architecture.
� Suitable for off the shelf and embedded systems

The most important design choice for Paramecium was flexibility and this
resulted in a system that is decomposed into many different components that are
dynamically configured together to comprise a system. This flexibility is important for
building application-specific operating systems . That is, operating systems that are
specialized for certain tasks. This does not only include traditional embedded systems
such as camera or TV microcontrollers, but also general purpose systems such a net-
work computer or a personal digital assistant. Even though the focus of this thesis is on
application specific operating systems the techniques and mechanisms can also be used
to build a general purpose operating system.

The second design choice was to safely extend the kernel by configuring certain
components to reside in the kernel. In Paramecium we use code signing to extend the
kernels trust relationship and thereby allow user applications to place trusted com-
ponents into the kernel. In fact, most of Paramecium components have been carefully
constructed, unless hardware dictated otherwise, to be independent of their placement
in kernel or user space.

The advantage of a decomposed system is that components can be reused among
different applications and that the few that require modification can be adapted. Being
able to vary the line that separates the kernel from the user application allows certain
types of applications, such as the Secure Java Virtual Machine described in Chapter 5,
that are hard to implement in existing systems. Furthermore, the ability to vary this
line dynamically at run time provides a great platform for experimentation.

In order to achieve high performance , Paramecium uses an event driven architec-
ture which unifies asynchronous interrupts and synchronous IPC. This event architec-
ture provides low-latency interrupt delivery by dispatching events directly to user
processes. The event mechanism is also the basis for our low-latency IPC mechanism.

In addition to these design choices we adhered to the following principles
through the design of Paramecium:

� Nonblocking base kernel.
� Preallocate resources.
� Precompute results.

SECTION 3.1 Design Issues and Choices 39

Given the small number of abstractions supported by the base kernel (i.e., the
kernel without extensions) we kept the kernel from blocking. That is, base kernel calls
always complete either successfully or with an appropriate error condition. This sim-
plifies the kernel design since it hardly has to keep any continuation state. On the other
hand, to allow immediate interrupt delivery, the kernel interfaces are not atomic and
require careful handling of method arguments. The second guideline is to preallocate
resources and precompute results where appropriate. This principle is used throughout
the system to improve the performance. For example, the TCP/IP component preallo-
cates receive buffers and the kernel preallocates interrupt return structures. The main
example of a place where precomputation is used is register window handling. The
content of various registers, window invalid mask and window invalid mask, are
precomputed based on the possible transitions.

The problems outlined in this paragraph are not unique for Paramecium but it
does try to solve them in a novel way. Rather than providing a secure view of the
hardware Paramecium is an ordinary microkernel albeit one with very few abstractions.
Hence it is sometimes referred to as a nanokernel. Paramecium allows code to be
inserted into the kernel. Rather than introducing a new concept, such as a special
extension language, to express handlers it uses components to extend the kernel. These
are reminiscent of kernel loadable modules [Goodheart and Cox, 1994]. Components
are loaded on demand by the application and their placement is configurable. Kernel
safety is ensured by extending the trust relationship of the operating system rather than
using verification techniques. This is further described in Section 3.3. The next section
discusses some of the basic kernel abstractions.

3.2. Abstractions
The Paramecium kernel provides a small set of closely related fundamental

abstractions. These are contexts, events, and objects. They can be used to implement a
full fledged multitasking operating system or a very application specific one. This all
depends on the modules loaded into the operating system at configuration time.

A context is Paramecium’s notion of a protection domain. It combines a virtual-
to-physical page mapping together with fault protection and its own object name space.
The fault protection includes processor faults (illegal instruction, division by zero) and
memory protection faults. A context is used as a firewall to protect different user
applications in the system. The user can create new contexts and load executable code
into them in the form of objects, which are registered in the context’s name space.

In Paramecium the kernel is just another context in the system albeit with some
minor differences. The kernel context has access to each context in the system and can
execute privileged instructions. Loading executable code into the kernel context, there-
fore, requires the code to be certified by an external certification authority.

A context is different from the traditional notion of a process in the sense that it
lacks an initial thread of control. Instead, a thread of control can enter a context
through the event mechanism. Like UNIX, contexts are hierarchical. A parent creates

40 Kernel Design for Extensible Systems CHAPTER 3

its child contexts, creates event handlers for it, and populates the context’s name space.
The latter is used by the context to access interfaces to services.

Preemptive events are Paramecium’s basic thread of control abstraction. When-
ever an event is raised, control is passed to an event handler. This event handler may
reside in the current context or in a different context. Context transitions are handled
transparently by the event invocation mechanism. Events are raised synchronously or
asynchronously. Synchronous events are caused by explicitly raising the event or by
processor traps (such as divide by zero, memory faults, etc.). Asynchronous events are
caused by external interrupts.

Multiple event invocations are called invocation chains or chains . The kernel
supports a coroutine like mechanism for creating, destroying, and swapping invocation
chains. Events are the underlying mechanism for cross context interface invocations.

Objects are the containers for executable code and data. They are loaded dynam-
ically on demand into either a user context or the kernel context. In which context they
are loaded is under the control of the application, with the provision that only certified
objects can be loaded into the kernel context. The kernel implements an extended ver-
sion of the object name space that is described in Chapter 2. It also supports transpar-
ent proxy instantiation for interfaces to objects in other contexts.

Paramecium’s protection model is based on capabilities, called resource identif-
iers . Contexts initially start without any capabilities, not even the ability to invoke sys-
tem calls. It is up to the creator of the context to populate its child with capabilities.
The kernel only provides basic protection primitives, it does not enforce a particular
protection policy. A good example of this is device allocation. Devices are allocated
on a first come first serve basis. A stricter device allocation policy can be enforced by
interposing the kernel’s device manager with a specialized allocation manager. The
allocation manager can implement a policy such that only specified users are allowed
to allocate devices. This approach, interposing separate policy managers, is used
throughout the system to enforce security.

3.3. Kernel Extension Mechanisms
An operating system kernel enforces the protection within an operating system.

It is therefore imperative that kernel extensions, that is code that is inserted into the
kernel, exhibit the following two properties:

� Memory safety , which refers to memory protection. This requirement guaran-
tees that an extension will not access memory to which it is not authorized.
Controlling memory safety is the easiest of the two requirements to fulfill.

� Control safety , which refers to the control flow of an extension. This require-
ment guarantees that an extension will not run code it is not authorized to exe-
cute. This means to control which procedures an extension can invoke and the
locations it can jump to, and to bound the execution time. In its most general

SECTION 3.3 Kernel Extension Mechanisms 41

form, control safety is equivalent to the halting problem and is undecidable
[Hopcroft and Ullman, 1979].

The remainder of this section discusses the different ways in which researchers
ensure memory and control safety properties for kernel extensions. We first discuss the
memory safety.

There are three popular ways to ensure memory safety: Software fault isolation
[Wahbe et al., 1993], proof-carrying code [Necula and Lee, 1996], and type-safe
languages [Bershad et al., 1995a].

Wahbe et al. introduced an efficient software-based fault isolation technique
(a.k.a. sandboxing), whereby each load, store, and control transfer in an extension is
rewritten to include software validity checks. They showed that the resulting
extension’s performance deteriorated only by 5-30%. It is likely that this slowdown
can be further reduced by using compiler optimization techniques that move the vali-
dity checks outside of loops, aggregate validity checks, etc. In effect, the software-
fault isolation technique implements a software MMU, albeit with a 5-30% slowdown.

Necula and Lee introduced a novel concept of proof-carrying code [Necula and
Lee, 1996]. It eliminates the slowdown associated with software fault isolation by stat-
ically verifying a proof of the extension. This proof asserts that the extension complies
with an agreed upon security policy. The extension itself does not contain any extra
validity checking code and does not suffer a slowdown. Generating the proof, how-
ever, still remains a research topic. Currently the proof is handwritten using an exter-
nal theorem prover. Ideally the proof is constructed at compile time and associated
with the extension.

The third mechanism to ensure memory safety is the use of type-safe languages.
This form of protection has a lineage that goes back to, at least, the Burroughs B5000
[Burroughs, 1961]. In current research this protection model is used for kernel exten-
sions in SPIN [Bershad et al., 1995b] and to a certain extent also in ExOS [Engler et
al., 1995]. In SPIN an extension is compiled with a trusted compiler that uses type
checking, safe language constructs, and, in cases where these two measure fail, validity
checks that enforce memory protection at execution time. ExOS uses a slightly dif-
ferent variant whereby it generates the extension code at run time at which point it
inserts the validity checks.

Ensuring control safety is a much harder problem, because in its most general
form it is equivalent to the halting problem . That is, can you write a program that
determines whether another program halts on a given input? The answer is no [Hop-
croft and Ullman, 1979]. This means that there is no algorithm that can statically
determine the control safety properties for every possible program. Of course, as with
so many theoretical results, enough assumptions can be added to make this proof inap-
plicable while the result is still practically viable.

In this case, the addition of run-time checks is sufficient to enforce control
safety, or a conservative assumption that both execution paths are equally likely. The
proof does point out the need for formal underpinnings for methods that claim to pro-

42 Kernel Design for Extensible Systems CHAPTER 3

vide control safety. This does not only include control safety within a program but also
in conjunction with the invocation of external interfaces.

Software fault isolation implements effectively a software MMU and is therefore
not control safe. SPIN and ExOS both use trusted compilers or code generators to
enforce control safety in addition to run-time safety checks for dynamic branches.
Trusted compilers only work when there is enough semantic information available at
compile time to enforce control safety for each interface that is used by an extension.
For example, part of an interface specification could be that calls to disable_interrupts

are followed by calls to enable_interrupts. When the extension omits the later the
safety of the extension is clearly violated. Some promising work on providing inter-
face safety guarantees has been done recently by Engler [Engler et al., 2000] but the
technique generates false positives and depends on the compiler (or global optimizer)
to do a static analysis.

Proof-carrying code asserts that only valid control transfers are made. This does
not contradict the nonexistence of the proof described above. That proof shows that
there is no general solution. Proof-carrying code asserts that given a security policy the
code can only reach a subset of all the states defined by that policy.

To overcome the disadvantages of the extension methods described above (sum-
marized in Figure 3.1), Paramecium uses a different method. Rather than trying to for-
malize memory and control safety we take the point of view that extending the kernel is
essentially extending trust [Van Doorn et al., 1995]. Trust is the basis of computer
security and is a partial order relation with a principal at the top. We follow this model
closely and introduce a verification authority that is responsible for verifying kernel
extensions. The method of verification is left undefined and may include manual code
inspections, type-safe compilers, run-time code generation, or any other methods
deemed safe. Only those components that are signed by the verification authority can
run in the kernel’s protection domain. Similar to ours, the SPIN system, which
depends on type-safe compilers, uses a digital signature verification mechanism to
establish that the extension code was generated by a safe compiler instead of a normal
one. Our approach differs from SPIN in that it allows for potentially many different
verification techniques.

Rather than formalizing the correctness of the code Paramecium formalizes the
trust in the code. This offers a number of advantages over the methods described
above. Other than the verification of the signature at load time it does not incur an
additional overhead. It provides a framework for many different verification methods
that are trusted by the verification authority. Eventually, it is the authority that is
responsible for the behavior of the extension. The signature scheme used by Parame-
cium leaves an audit trail that can be used to locate the responsible verification author-
ity in the event of mishap.

The implementation of this scheme is straightforward given the existence of a
public key infrastructure such as X.509 [X.509, 1997]. In the current Paramecium
implementation the method is restricted to a single verification authority and therefore

SECTION 3.3 Kernel Extension Mechanisms 43

���

Technique Memory safety Control Safety Remarks��

Software fault isola-

tion

Slowdown Slowdown 5-30% performance de-

gradation for sandbox-

ing
���

Proof-carrying code No slowdown, verifi-

cation at load time

No slowdown, verifi-

cation at load time

Not practical

���

Type-safe languages Slowdown for dyn-

amic memory acc-

esses

Slowdown for dyn-

amic branches

Requires a trusted com-

piler to compile the

module and a mechan-

ism to prevent tampering
���

Signed code No slowdown, signa-

ture check at load

time

No slowdown, signa-

ture check at load

time

Guarantees trust in the

code, not its correctness

���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.2. Extension methods.

uses a unique shared secret per host. This key is only known to the verification author-
ity and the host’s TCB. Each component that can be loaded into the kernel address
space has a message authentication code (HMAC) [Menezes et al., 1997] in it that cov-
ers the binary representation of the component and the shared secret. The component is
activated only when the kernel has verified its HMAC. A similar mechanism for
signed code is used by Java [Wallach et al., 1997] and the IBM 4758 secure coproces-
sor [Smith and Weingart, 1999] to verify downloaded code.

During our work with Paramecium, we found that signed modules are not suffi-
cient and that you really need a concept of signed configurations. That is, a signed
module can only be trusted to work together with a specified set of other signed
modules. Every time an application adds an extension to the kernel it should result in a
trusted configuration that has been signed. The reason for this is that even though indi-
vidual modules are signed and therefore trusted, the semantics expected by one module
may not be exactly what is provided by another. For example, our network protocol
stack is designed with the assumption that it is the only stack on the system. Instantiat-
ing two stacks at the same time will result in competition for the same resources and
incorrect behavior for the user of the network protocol stack. Another example is
where two applications each instantiate a kernel thread module. Again these two
modules are competing for the same resources which may lead to incorrect behavior for
the two applications.

A signed configuration mechanism can be used to enforce these additional
requirements It can also be used to capture dependencies such as a network device
driver depending on the presence of a buffer cache module and a network stack

44 Kernel Design for Extensible Systems CHAPTER 3

depending on a network device driver. Configuration signatures have not been
explored in our current system.

Providing the guarantee of kernel safety is only one aspect of extending a kernel.
Other aspects are: late binding and the naming of resources. In Paramecium, modules
are dynamically loaded into the kernel and are given an interface to the kernel name
service. Using this interface they can obtain interfaces to other kernel or user-level ser-
vices. In the latter case certain restrictions apply for bulk data transfers. The name
space issues are further discussed in Section 3.4.5.

3.4. Paramecium Nucleus
The Paramecium kernel consists of a small number of services and allows exten-

sions to be placed within its address space (see Figure 3.3). Each of these services are
essential for the security of the system and cannot be implemented in user space
without jeopardizing the integrity of the system. Each service manages one or more
system resources. These resources are identified by 64-bit resource identifiers and can
be exported to a user address space.

. ...
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..
..

Events and chains Contexts and virtual memory

Name

service

Device

service

Physical

memory

Miscellaneous

services Dynamic

extensions

Kernel-level

User-level

Hardware

Figure 3.3. Paramecium kernel organization.

The following is a brief overview of the services provided by the kernel and the
resources they manage:

� Context and virtual memory management. The most central resource provided
by the kernel is a context or protection domain. A protection domain is a
mapping of virtual to physical addresses, a set of fault events, and a name
space. The fault events are raised when a protection domain specific fault
occurs, such as division by zero. The name space contains those objects the
context can access. Threads are orthogonal to a protection domain and protec-
tion domains do not a priori include a thread of control. Threads can be
created in a protection domain by events that transfer control to it.

� Physical memory. Memory management is separated into physical and virtual
memory management. The physical memory service allocates physical pages
which are then mapped onto a virtual memory address using the virtual

SECTION 3.4 Paramecium Nucleus 45

memory service. Physical pages are identified by a generic system-wide
resource identifier. Shared memory is implemented by passing this physical
page resource identifier to another protection domain and have it map it into
its virtual address space.

� Event and chain management. The event service implements a preemptive
event mechanism. Two kinds of events exist: user defined events, and proces-
sor events (synchronous traps and asynchronous interrupts). Each event has
associated with it a number of, at least one, handlers. A handler consists of a
protection domain identifier, the address of a call-back function, and a stack
pointer. Raising an event, either explicitly or through a processor related trap
or interrupt, causes control to be transfered to the handler specified by the pro-
tection domain identifier and call-back function using the specified handler
stack. The event service also has provisions for the handler to determine the
identity of the caller domain. This can be used to implement discretionary
access control. For each raised event, the kernel keeps some minimal event
invocation state containing, for example, the return address. This gives rise to
a chain of event invocations when event handlers raise other events. Concep-
tually, chains are similar to nested procedure calls within a single process. To
manage these invocation chains, the kernel provides a primitive set of corou-
tine like operations to swap and suspend invocation chains.

� Name service. Each service exports one or more named interfaces. These
interfaces are stored in a hierarchical name space. This name space is
managed by the kernel. Each protection domain has a view of its own subtree
of the name-space; the kernel address space has a view of the entire tree
including all the subtrees of different protection domains.

� Device allocator. The Paramecium kernel does not implement device drivers
but does arbitrate the allocation of physical devices. Some devices can be
shared but most require exclusive access by a single device driver.

� Miscellaneous services. A small number of other services are implemented by
the kernel. One of these is a random number generator because the kernel has
the most sources of entropy.

Each of these services is discussed in more detail below.

3.4.1. Basic Concepts
Each resource (physical page, virtual memory context, event, etc.) in Parame-

cium has a 64-bit capability associated with it which we, for historical reasons, call a
resource identifier. As in Amoeba [Tanenbaum et al., 1986], these resource identifiers
are sparse random numbers generated by the kernel and managed by user programs. It
is important that these resource identifiers are kept secret. Revealing them will grant
other user processes access to the resources they stand for.

46 Kernel Design for Extensible Systems CHAPTER 3

Resource identifiers are similar to capabilities [Dennis and Van Horn, 1966], and
suffer from exactly the same well known confinement problem [Boebert, 1984; Karger
and Herbert, 1984; Lampson, 1973]. The possession of a capability grants the holder
access to the resource. Given the discretionary access model used by Paramecium, it is
impossible to confine capabilities to a protection domain (proof of this is due to
Harrison, Ruzzo, and Ullman [Harrison et al., 1976]). Furthermore, the sparse 64-bit
number space might prove to be insufficient for adequate protection. Searching this
space, assuming that each probe takes 1 nanosecond, for a particular resource takes
approximately 292 years on average, this time decreases rapidly when searching for
any object when the space is well populated. For example, it takes less than one day to
find a valid resource identifier when there are more than 2 17 ∼ 100,000 resources in
the system. From a security point of view this probability is too high.

1
2
3
.

.

.

resource

1
2
3
.

.

.
resource

resource

Kernel

Process 1 Process 2

C-list for Process 1 C-list for Process 2

grant capability 1 to Process 2 receive capability 1

Figure 3.4. Kernel managed resource lists (a.k.a. capability lists). User

processes refer to a resource by an index into a per process resource list.

Granting another process access to a resource causes the resource to be added

to the other process its resource list.

To overcome this critique and allow better confinement of resources, we propose
the following modification which is not implemented in the current system. Rather
than having the user manage the resource identifiers, they are managed by the kernel.
Resources within a protection domain are identified by a descriptor which indexes the
resource table in the kernel for that domain (much like a file descriptor table in UNIX).
This approach is shown in Figure 3.4 and is similar to Hydra’s capability lists [Wulf
and Harbison, 1981]. In order to pass a resource identifier from one protection domain
to another an explicit grant operation is required.

SECTION 3.4 Paramecium Nucleus 47

The grant operation is implemented by the kernel and takes the resource descrip-
tor, a destination domain, and a permission mask as arguments. The permission mask
defines what the destination domain can do with the resource. Currently this only con-
sists of limiting a resource to the destination domain or allowing it to be passed freely.
The grant operation returns a resource descriptor in the destination domain if access is
granted. This resource descriptor is then communicated to the destination domain
through an event or method invocation. Complementary to grant is the revoke opera-
tion which allows the resource owner to remove access rights for a specified domain.

The implementation described above is similar to the take-grant access model
[Bishop, 1979; Snyder, 1977] where capabilities have, in addition to the normal read
and write rights, also take and grant rights. The read and write rights allows the holder
to examine or modify (respectively) the resource associated with the capability. The
take and grant rights allow the holder to read and write (respectively) a capability
through a given capability (e.g., the take right for a file allows the holder to read capa-
bilities from that file). This model has been extended by Shapiro to diminish-grant
which provides the ability to obtain capabilities with diminished rights rather than a
pure capability take [Shapiro et al., 1999]. Although the take-grant and diminish-grant
models do not solve the confinement problem as outlined by Lampson [Lampson,
1973], Shapiro and Weber did show that the diminish-grant model does provide con-
finement for overt communication channels [Shapiro and Weber, 1997]†. The pure
take-grant model does not provide any confinement [Karger, 1988].

Kernel managed resource identifiers have a number of benefits. They can be
tightly controlled when shared with other domains. It is also possible for the kernel to
intervene and enforce a mandatory access control model onto the shared resources.
Finally, resource descriptors consume less memory and register space in that they are
smaller than the full 64-bit resource identifier. Of course, within the kernel it is no
longer necessary to maintain 64-bit resource identifiers; pointers to the actual resource
suffice.

3.4.2. Protection Domains
A protection domain is an abstraction for a unit of protection. It has associated

with it a set of access rights to resources and is in most cases physically separated from
other protection domains. That is, faults are independent. A fault in one domain does
not automatically cause a fault in another. Communication between protection
domains is performed by a mediator such as the kernel or a run-time system.

The notion of a protection domain is based on the seminal work on protection by
Lampson [Lampson, 1974]. In the Lampson protection model, the world is divided

� ���������������������������

†Lamspon’s definition [Lampson, 1973] of confinement refers to all communication channels, including
covert channels.

48 Kernel Design for Extensible Systems CHAPTER 3

into active components, called subjects, passive components called objects†, and policy
rules specifying which subjects can access which objects. Together these can be
represented in an access control matrix which specifies which subjects can access
which objects.

In Lampson’s model, a protection domain is a set of rights a process has during
its execution, but in operating system research it is often used to describe the fault iso-
lation properties of a process. Hence, in this thesis we use the term context to describe
an isolated domain which has its own memory mappings, fault handling, and access
rights. Note that a context is similar to a process but lacks an implicit thread of control.
Threads of control are orthogonal to a context, however, a thread of control is always
executing in a context.

Contexts are hierarchical. That is, a parent can create new contexts and has full
control over the mappings, fault handling and resources of its children. A default con-
text is empty, it has no memory mappings, no fault handlers, and no accessible
resources. For example, a context cannot create other contexts or write to the control-
ling terminal unless its parent gave it that resource. This notion of an empty context is
a basic building block for constructing secure systems.

The advantage of Paramecium contexts over a traditional process based system is
that they are much more lightweight. They lack traditional state, such as open file
tables, and thread state, and the parent’s complete control over a context allows appli-
cations to use fine-grained hardware protection. This is especially useful for com-
ponent based systems, such as COM, that require fine-grained sharing and fault isola-
tion.

At any given time some context is current. Traps occurring during that time are
directed using the event table for the current context, as shown in Figure 3.5. Each pro-
cessor defines a limited number of traps which normally include divide by zero,
memory access faults, unaligned memory access, etc. Using the event table the
appropriate handler is located, which might be in a different context. Device interrupts
are not associated with the current context and are stored in a global interrupt event
table in the kernel. When an interrupt occurs its event is looked up in the table, after
which it is raised. The handler implementing the interrupt handler can reside in a user
or kernel context. Unlike context events, interrupt events cannot be set explicitly.
Instead they are part of the device manager interface, which is discussed in Sec-
tion 3.4.6.

The contexts are managed by the kernel, and it exports an interface, see Fig-
ure 3.6, with methods to create and destroy contexts and set and clear context fault
events (methods create, destroy, setfault, and clrfault respectively). This interface, as
well as others in this chapter, are all available to the components inside the kernel as
well as to components in user space. The availability of an interface in a user-space
context is controlled by a parent context (see Section 3.4.5). Creating a new context

� ���������������������������

†Objects in the Lampson protection model should not be confused with objects as defined in Chapter 2.

SECTION 3.4 Paramecium Nucleus 49

Context Current context Context

Kernel

Interrupt

Event table Event table Event table

Interrupt table

Divide by zero

Thread of control

Active protection domains:

K
ernel

CPU timeline

C
urrent contect

Figure 3.5. Trap versus interrupt handling. Each context has an exception

event table, which is kept by the kernel, for handling traps that occur whenever

that context is in control. Interrupts are treated differently, these are redirected

using a global interrupt event table.

requires a context name and a node in the parent name space which functions as a nam-
ing root for child context. This name space is an extension of the object name space in
Chapter 2 and is described in Section 3.4.5.

� ���

Method Description� �� ���

context_id = create(name, naming_context) Create a new context with specified name
� ���

destroy(context_id) Destroy an existing context
� ���

setfault(context_id, fault, event_id) Set event handler for this context
� ���

clrfault(context_id, fault) Clear event handler for this context
� ���
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 3.6. Context interface.

The context name is generated by the parent, but the kernel ensures that it
uniquely names the context by disallowing name collisions. This name is used by the
event authentication service, see Section 3.4.7, to identify contexts that raise an event.
This identifier is different from the resource identifier returned by the create method.

50 Kernel Design for Extensible Systems CHAPTER 3

The latter can be used to destroy contexts, set, and clear fault handlers. The former
only serves as a context name to publically identify the context.

3.4.3. Virtual and Physical Memory
One of the most important resources managed by the kernel is memory. In most

operating systems memory is organized as a virtual address space that is transparently
backed up by physical memory [Daley and Dennis, 1968; Kilburn et al., 1962]. In
Paramecium, memory is handled differently. Instead, the application is given low-level
control over its own memory mappings and fault handling policy by disassociating vir-
tual from physical memory. The kernel, like most microkernels, only provides an
interface for allocating physical memory and creating virtual mappings. Our interface
is much simpler than the one used in Mach’s virtual memory management system
[Rashid et al., 1998] and exposes more low level details about the underlying physical
pages. Other services such as demand paging, memory mapped files and shared
memory are implemented by the application itself or delegated to an external server.
These concepts are similar to Mach’s external pagers [Young et al., 1987] and space
banks in Eros [Shapiro et al., 1999].

The advantages of separating the two are:
� Reduction of kernel complexity.
� Applications control their own memory policy.
� Easy implementation of shared memory.

By moving the virtual memory management out of the kernel into the applica-
tion, we greatly reduce the kernel complexity and provide the application with com-
plete control over its memory management. Applications, such as Lisp interpreters,
expert systems, or DBMS systems that are able to predict their own paging behavior,
can implement their own paging algorithms to improve performance. An example of
this is Krueger’s work on application-specific virtual memory management [Krueger et
al., 1993]. Most applications, however, do not need this flexibility and hand off their
memory management to a general-purpose memory server.

Physical memory is managed by the kernel, which keeps unused pages on a free
list. Physical memory is allocated using the alloc method from the interface in Fig-
ure 3.7. It takes a page from the free list and associates it with the context allocating
the memory. A physical page is identified by a resource identifier and on a SPARC its
page size is 4 KB. Using the resource identifier the page is mapped into a virtual
address space. Sharing memory between two different contexts simply consist of pass-
ing the resource identifier for the page to another context. This receiving context has to
map it into its own virtual address space before it can be used.

Deallocation of physical memory occurs implicitly when the context is destroyed
or when it is explicitly freed using the free method. The physical memory interface
also contains a method to determine the physical address of a page, addr. This can be
used for implementing cache optimization strategies.

SECTION 3.4 Paramecium Nucleus 51

� ���

Method Description� �� ���

resource_id = alloc() Allocate one physical page
� ���

free(resource_id) Free a page
� ���

physaddr = addr(resource_id) Return page’s physical address
� ���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 3.7. Physical memory interface.

The virtual memory interface in Figure 3.8 is considerably more complicated but
conceptually similar to the physical memory interface. It too requires explicit alloca-
tion and deallocation of virtual memory within a specified context. Besides creating
the virtual to physical address mapping, the alloc method also sets the access attributes
(e.g., read-only, read-write, execute) and the fault event for the specified virtual page.
The fault event is raised whenever a fault condition, such as an access violation or page
not present fault occurs on that page. It is up to the fault handler of this event to take
adequate action, that is either fix the problem and restart or abort the thread or pro-
gram. The free method releases the virtual to physical address mapping.

���

Method Description��

virtaddr = alloc(context_id, hint, access_mode, physpages, event_id) Allocate virtual address space
���

free(context_id, virtaddr, size) Free virtual space
���

old = attr(context_id, virtaddr, size, attribute) Set page attributes
���

resource_id = phys(context_id, virtaddr) Get physical page resource
���

resource_id = range(context_id, virtaddr, size) Get range identifier
���
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.8. Virtual memory interface.

Only a program executing in a context or a holder of a context resource identifier
is able to control a context’s virtual memory mappings using the virtual memory inter-
face. For example, to implement a demand paging memory service, see Figure 3.9, the
parent of a newly created context passes the context identifier for it to a separate
memory page server. This server interposes the virtual memory interface and examines
and modifies each method invocation before passing them on to the kernel. It will
record the method arguments in its own internal table and replace the fault handler
argument to refer to its own page fault handler. All page faults for this page will end
up in the page server rather than the owning context.

52 Kernel Design for Extensible Systems CHAPTER 3

When memory gets exhausted, the page server will disassociate a physical page
from the context, write the contents to a backing store, and reuse the page for another
context. When the owning context refers to the absent page it will cause a page not
present fault that is handled by the page server. It will map the page in by obtaining a
free page, load it with the original content from the backing store, reinstate the map-
ping, and return the event which will resume the operation causing the fault. Faults
that are not handled by the page server, such as access violations, are passed on to the
owning context.

alloc(...)

Kernel

Program Page server

alloc(...)

Forward fault

Map page in

context address event

Intercept

Access fault

Handle exception

present fault

Page not

Allocate memory

Figure 3.9. Demand paging using a page server.

Of course, this page server only handles memory for contexts that cooperate. A
denial of service attacks occurs when a context hogs memory by allocating it directly
from the kernel and never returning it. If this is a concern, contexts should never be
given access to the actual physical memory interface but to an interposed one that
enforces a preset security policy.

The virtual memory interface has three additional methods, attr, phys, and range.
The method attr can be used to set and query individual virtual page attributes. Finding
the physical page associated with a virtual address is achieved using the phys method.

In some circumstances a context might only want to give away control over a
part of its address space. This can be done using the range method. This method
creates a resource identifier for a range of virtual memory which the owner can give
away. The recipient of that identifier has the same rights for that range as the owner
has.

SECTION 3.4 Paramecium Nucleus 53

An example of its use is the shared buffer pool service discussed in the next
chapter. This service manages multiple memory pools to implement zero-copy buffers
among multiple protection domains. Each participating context donates a range of its
virtual memory space, usually 16 MB, to the buffer pool service. It then creates the
buffers such that the contexts can pass offsets among each other. These offsets give
direct access to the buffers which the buffer pool service mapped into each space.

3.4.4. Thread of Control
A thread of control is an abstraction for the execution of a related sequence of

instructions. In traditional systems a thread of control is usually associated with a sin-
gle process, but in more contemporary systems, threads of control can migrate from
one protection domain to another. There can also be more than one thread of control.
These are either implemented by multiple processors or simulated by multiplexing
them on a single processor.

The various ways an operating system can manage these threads of control and
their effect on interrupt handling are summarized in figure 3.10. The two traditional
methods are event scheduling and event loops.

� ���

Thread of control abstraction Interrupt handling Preemptable� �� ���

Event scheduler High latency Yes
� ���

Simple event loop High latency No
� ���

Preemptive events Low latency Yes
� ���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 3.10. Thread of control management.

Event schedulers, used by, for example, UNIX, Amoeba and Windows NT,
schedule events (i.e., interrupts, processes and thread switches, interprocess communi-
cation) at well defined points. An event occurs, when a process or thread time slice
runs out, when a higher priority process or thread becomes runnable, or when an inter-
rupt has been posted. In these systems external (device) interrupts are handled at two
different steps to prevent race conditions. In the first step, the interrupt is ack-
nowledged by the CPU, the CPU state is saved, further interrupts are disabled, and the
interrupt handler is called. The first level interrupt handler restores the device state by,
for example, copying the data to an internal buffer so it can interrupt again. The
handler then informs the scheduler that an interrupt has occurred, restores the CPU
state, and resumes the interrupted thread of control. When, eventually, the scheduler is
invoked it handles the second level of the interrupt handler. At this point the second
level handler is similar to any other thread of control in the system [McKusick et al.,
1996].

54 Kernel Design for Extensible Systems CHAPTER 3

The main disadvantage of this system is the high interrupt overhead when
delivering interrupts to user applications. The application has to wait for or trigger the
next scheduler invocation before interrupts are delivered (either as signals or mes-
sages). Applications, such as the Orca run-time system, which control the communica-
tion hardware in user space need a much lower latency interrupt delivery mechanism.

The second thread of control method is a simple event loop. These are used in
Windows, MacOS, PalmOS, Oberon, etc. With this method, the main thread of control
consists of an event dispatch loop which waits for an event to occur and then calls an
operation to handle the event. During the processing of an event other events that
occur are queued rather than preempting the current operation. Interrupts are posted
and queued as new events. Again, the disadvantage of this system is its high interrupt
latency when an event dispatcher is not waiting for an event.

Hybrid thread of control mechanisms are also possible. Examples of these are
message passing systems where the application consists of an event loop which accepts
messages and the kernel uses an event scheduler to schedule different processes or
threads. Examples of these systems are Amoeba and Eros.

Paramecium uses a slightly different form of thread of control management:
preemptive events. The basic control method is that of an event loop but new events
preempt the current operation immediately rather than being queued. The main advan-
tage of this method is the low latency interrupt delivery. When an interrupt occurs con-
trol is immediately transfered to the handler of the respective event, even when the
thread of control is executing system code. The obvious drawback is that the program-
mer has to handle the concurrency caused by this preemption. Most of these con-
currency problems are handled by the thread package described in the next chapter.

The remainder of this section discusses the design rationale for our integrated
event mechanism, the kernel interfaces, and the specifics of an efficient implementa-
tion on the SPARC architecture.

Events
To enable efficient user-level interrupt handling Paramecium uses a preemptive

event mechanism to dispatch interrupts to user-level programs. Rather than introduc-
ing separate mechanisms for handling user-level interrupts and interprocess communi-
cation (IPC) we chose to integrate the two mechanisms into a single integrated event
mechanism. The advantages of integrating these mechanisms are a single unified com-
munication abstraction and a reduction of implementation complexity. The main
motivation behind an integrated event scheme was our experience with the Amoeba
operating system. This system supports three separate communication mechanisms,
asynchronous signals, RPC, and group communication. Each of these have different
semantics and interfaces, and using combinations of them in a single application
requires careful handling by the programmer [Kaashoek, 1992].

SECTION 3.4 Paramecium Nucleus 55

Paramecium’s unified event mechanism combines the following three kinds of
events:

� Synchronous interrupts and processor faults such as divide by zero, instruction
access violations, or invalid address faults. These traps are caused by excep-
tions in the software running on the processor.

� Asynchronous interrupts. These interrupts are caused by external devices.
� Explicit event invocations by the software running on the processor.

Each event has a handler associated with it that is executed when the event is
raised. An event handler consists of a function pointer, a stack pointer and a context
identifier. The function pointer is the address of the handler routine that is executed on
an event invocation. This function executes in the protection domain identified by the
context identifier and uses the specified stack for its automatic variable storage and
activation records. During the executing of its handler the event handler is blocked to
prevent overwriting the stack, the single nonsharable resource. That is, event handlers
are not reentrant. To allow concurrent event invocations, each event can have more
than one handler. These are activated as soon as the event occurs. Invocations of
events do not queue or block when there are no handlers available, instead the invoca-
tion returns an error indicating that the invocation needs to be retried. When an event
handler finishes execution, it is made available for the next event occurrence.

Raising an event causes the current thread of control to transfer to one of the
event’s handlers. This handler may be implemented in a protection domain different
from the current thread of control context. When such a handler is invoked, the current
thread of control will be transfered to the appropriate protection domain. This effec-
tively creates a chain of event handler invocations. Such a chain is called an event
(invocation) chain and is maintained by the kernel. To manage these event chains, the
kernel provides a coroutine like interface to create, destroy, and swap different chains.

An example of a chain is shown in Figure 3.11. Here, a thread in context A
invokes an event for which the handler resides in context B. This results in a transfer
of control to context B (step 1 and 2). Similar, in context B that thread executes a
branch operation, a kind of invocation see below, which causes control to be transfered
to context C (step 3 and 4). Although the thread of control passed three different con-
texts it is still part of the same logical entity, its chain.

Chains provide an efficient mechanism to transfer control from one context to
another without changing the schedulable entity of the thread of control. It is the
underlying mechanism for our migrating thread package which is described in Sec-
tion 4.1. The motivation behind the chains abstraction is to provide a fast cross context
transfer mechanism that fits in seamlessly with the event mechanism and that does not
require the kernel to block such as with rendez-vous [Barnes, 1989], operations. In
addition, Ford and Lepreau [Ford and Lepreau, 1994] have shown that migrating
threads, an abstraction that is very similar to chains, improved the interprocess com-
munication latency on their system by a factor of 1.7 to 3.4 over normal local RPC.

56 Kernel Design for Extensible Systems CHAPTER 3

branch

Kernel

Context A Context B Context C

invoke

42

3

1

Figure 3.11. Example of an event invocation chain.

The reason for this is that traditional interprocess communication mechanisms, such as
a mailbox [Accetta et al., 1986] or rendez-vous have a considerable overhead because
they involve many extra context switches.

Unlike most contemporary operating system (such as LavaOS [Jaeger et al.,
1998], Amoeba, and SPACE [Probert et al., 1991]), Paramecium does not provide
threads as one of its basic kernel abstractions. Instead it provides the above mentioned
event chains. The motivation behind this is that inherent to a thread implementation
are a large number of policy decisions, these include thread priorities, thread schedul-
ing (round robin, earliest dead-line first, etc.), synchronization primitives, and locking
strategy. These vary per application. Therefore, the thread component is not a fixed
kernel abstraction but a dynamic loadable object. For its implementation it uses the
event chain abstraction.

In the remainder of this section we describe the two different kind of events, syn-
chronous and asynchronous events, in greater detail including their implementation
details for a SPARC RISC processor.

Synchronous Events
Synchronous events are event invocations that are caused by:

1) Explicit event invocations. These are caused by calling the invoke or branch
methods of the event interface (see below).

SECTION 3.4 Paramecium Nucleus 57

2) Processor traps. These are caused by the execution of special instructions.
such as the SPARC trap instruction, ta, or breakpoint traps.

3) Synchronous faults. These are caused by, for example, illegal instruction
traps, memory violations, and bus errors.

Each event has one or more handlers associated with it. A synchronous event
causes control to be transfered to the first handler that is available. The activation of a
handler is similar to a local RPC call [Bershad et al., 1989], in that it passes control to
the specified context and continues execution at the program counter using the handler
stack. In case of an explicit event invocation additional arguments are copied onto the
handler stack. When the handler returns the invocation returns as well.

Upon an event invocation, the first handler is taken from the event inactive
handler list and marked active. When there are no event handlers left, a fall back event
is generated to signal an exception. This exception implements an application specific
mechanism, for example a time out, to restart the invocation. When there are no fall
back handlers left, the faulting context is destroyed. This exception handling mechan-
ism is the result of the explicit decision to leave the scheduler (policy) outside the ker-
nel and to allow application specific handling of invocation failures.

An event invocation chain is a sequence of active event invocations made by the
same thread of control. As with all other kernel resources, a chain is identified by a 64
bit resource id. When creating a chain the caller has to provide a function where exe-
cution is supposed to start, a stack and optional arguments which are passed to the
function. The chain abstraction is the basis for the thread management system that pro-
vides scheduling. Event invocations cause the chain to extend to possibly different
contexts. Even though the chain is executing in another context it can still be managed
by the invoking context by using its resource identifier. The invocation chain is main-
tained in the kernel and consists of a list of return information structures. These struc-
tures contain the machine state (registers, MMU context, etc.) necessary to resume
from an event invocation.

Raising an event can be done in two different ways. The first is a call , which is a
straightforward invocation where control is returned to the invokee after the handler
has finished. The second is a branch (see Figure 3.12). A branch is similar to an invo-
cation except that it does not return to the current invokee but to the previous one. That
is, it skips a level of event activation. The advantage of a branch is that the resources
held by the current event invocation, i.e., event handler stack and kernel data structures,
are relinquished before executing the branch. For example, consider an application cal-
ling the invoke method in the kernel which then invokes an event handler in a different
context. Upon return of this handler control is transfered back to the kernel. At that
point resources held by the kernel are released and control is returned to the applica-
tion. A more efficient implementation uses the branch mechanism. Here the kernel
uses a branch method, which releases the kernel held resources, before invoking the

58 Kernel Design for Extensible Systems CHAPTER 3

event handler. When this handler returns, control is passed back to the application
rather than to the kernel.

e 0 e 1 e 2 e 3

1. call 2. call 3. branch

4. return

5. return

Figure 3.12. Synchronous event invocation primitives.

Once a handler is executing, it cannot be reinvoked since its stack is in use. That
is, handlers are not reentrant. A special operation exists to detach the current stack
from the event handler and replace it with a new stack. The event handler with its new
stack is then placed on the inactive handler list ready to be reactivated. The old stack,
on which the thread of control is still executing can then be associated with a newly
created thread. This detach ability is used to implement pop-up threads.

Under certain circumstances it is important to separate the authorization to create
and delete an event from registering a new handler. For example, adding a handler to
an event is different from deleting that event or raising it. In order to accomplish this,
we use a dual naming scheme. Each event has a public event name and a private event
identifier. The event name is used to register new handlers. Deleting an event, how-
ever, requires possession of a valid event identifier.

Asynchronous events
Paramecium unifies synchronous and asynchronous events into a single mechan-

ism. It turns asynchronous events, that is device interrupts, into synchronous event
invocations that preempt the current thread of control. The immediate invocation of an
event handler provides low latency interrupt delivery to a user level process.

When an interrupt occurs, the current chain is interrupted and an event invoca-
tion representing the interrupt is pushed onto the current chain. This invocation causes
an interrupt handler to run and when the handler returns the original chain is resumed.
Since the interrupt preempts an ongoing operation its handler needs to be short or it has
to promote itself to a thread (see Chapter 4). Unfortunately, this simple interrupt
mechanism is obscured by interrupt priority levels.

Most processors have multiple devices each capable of interrupting the main pro-
cessors (e.g., network, SCSI, UART devices). Each of these devices is given an inter-
rupt priority where a higher priority takes precedence over a lower priority. For exam-
ple, normally a SPARC processor executes at priority 0. A level 1 interrupt will

SECTION 3.4 Paramecium Nucleus 59

preempt the operation running at priority 0 and raise the priority interrupt level to 1.
Any further level 1 interrupts will not cause a preemption, but higher priority levels,
say 10, will.

The interrupt priority level mechanism raises an integrity problem where a high
priority device is given to a low security level application and a low priority device to a
high security level application. The low security level application can starve the high
application. Hence low security processes should not have access to devices with an
interrupt priority that is higher than the device with the lowest interrupt priority held by
a high security level application. In the Paramecium philosophy it is not up to the ker-
nel to enforce this policy. Instead a separate service, a policy manager, should inter-
pose the device manager interface and enforce the policy it sees fit.

An extra complication for interrupt handlers is that on a SPARC interrupts are
level triggered rather than edge triggered. That is, an interrupt takes place when the
interrupt line is high. The interrupt line continues to be high, and thus interrupts the
processor, until the driver has told the device to stop interrupting. Hence to prevent an
infinite amount of nested interrupts, the processor has to raise its interrupt priority level
to that of the interrupt. This allows higher level interrupts to preempt the processor, but
will mask out lower level interrupts.

Before an interrupt is turned into an event, the processor’s interrupt priority level
is raised to that of the interrupt. This is recorded in the event return information struc-
tures. Paramecium assumes that one of the first actions the driver will take is to ack-
nowledge the interrupt to the device. It will then continue processing and eventually
lower the priority interrupt level of the processor when:

1) The interrupt event returns normally.

2) The interrupt event performs a detach (swap) stack operation.

The first case is simple, the priority interrupt level is just restored. Most inter-
rupts are handled like this. In the second case the priority interrupt level is also
restored because the handler is returned to the event’s inactive handler list for future
interrupts. When all handlers for the event are busy, the interrupt level masks out any
further interrupts of that level until one of the handlers returned or detached. The
second case only occurs when using the thread package to turn device interrupts into
real pop-up threads.

A side effect of preemptive events is that the kernel operations need to be non-
blocking or the kernel has to implement a very fine grained locking mechanism to
improve concurrency. We explored the later which, due to an architectural problem,
caused a fair amount of overhead (see below). This overhead could probably be
avoided by using optimistic locking techniques [Stodolsky et al., 1993]. On the other
hand, our kernel operations are sufficiently small and short enough that they might be
atomic, such as in the OSKit [Ford et al., 1997], and not require any locking. This has
not been explored further in the current system.

60 Kernel Design for Extensible Systems CHAPTER 3

Interfaces
The event and chain abstractions are exported by the kernel using two different

interfaces. The event interface, see Figure 3.13, manages event creation, deletion,
handler registration, invocation, and branching.

� ���

Method Description� �� ���

event_id = create(event_name) Create new event
� ���

destroy(event_id) Destroy event and release all handlers
� ���

enable(event_id) Enable events
� ���

disable(event_id) Disable events
� ���

handler_id = register(event_name, context_id, method, stack) Register a new event handler
� ���

unregister(handler_id) Unregister an event handler
� ���

result = invoke(event_id, arguments) Explicitly invoke an event
� ���

branch(event_id, arguments) Branch to an event
� ���

current_stack = detach(new_stack) Detach current stack
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.13. Event interface.

The create method from the event interface is used to create an event with a pub-
lic name evname. A private resource identifier is returned when the event was created
successfully. The create method is used to define new events that can be used, for
example, for interprocess communication or for MMU fault redirection. An event is
deleted by calling destroy with its private resource identifier as an argument. Event
invocation can be temporarily disabled and enabled by using enable and disable to
prevent race conditions when manipulating sensitive data structures. Event handlers
are registered using register and removed using unregister. Registering a handler
requires as arguments an event name, an execution context, a method address, and a
stack. It returns a handler identifier which should be used as an argument to unregister.
An explicit event invocation is achieved by calling invoke. It takes a private event
identifier, and an argument vector. The arguments are pushed onto the handler stack or
passed in registers as dictated by the calling conventions. Invoke returns when the
method handler returns.

The branch method is used in cases where control is not passed back to the
invoker but to the previous invoker (see Figure 3.13). The resource held by the current
handler are relinquished before the actual invocation is made.

Invoking an event causes the next inactive handler to be made active. The
current handler can detach the stack, replace it with an unused one and deactivate the
current handler using detach. This technique is used to turn events into pop-up threads.

SECTION 3.4 Paramecium Nucleus 61

The chain interface, see Figure 3.14, manages chain creation, deletion, and the
swapping of chains. Its create method is used to create a new chain. The create
method arguments are similar to the event invoke method. The create method returns
the chain identifier for the new chain. The chain identifier for the current chain can be
obtained by calling self. Chains are a thread of control abstraction that can cross multi-
ple contexts and still behave as a single entity. A coroutine like interface exists to
suspend the current chain and resume a new chain by calling the swap method.
Finally, destroy is used to delete a chain. Destroying a chain causes all its resources to
be relinquished.

� ���

Method Description� �� ���

chain_id = create(context_id, pc, stack, arguments) Create a new chain
� ���

destroy(chain_id) Destroy current chain
� ���

chain_id = self() Obtain current chain
� ���

swap(next_chain_id) Swap current by next chain
� ���
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 3.14. Execution chain interface.

Efficient Implementation on a SPARC
Our system has been implemented on a Sun SPARCClassic, a MicroSPARC with

register windows. Register windows raise an interesting design challenge since they
hold the top of the execution stack. Most operating systems, such as SunOS, Solaris,
Amoeba, flush the register windows to memory before making the transition to a dif-
ferent protection domain. This causes a high overhead on IPC and interrupt processing.

In Paramecium we use a different mechanism where we mark windows as
invalid, track their owner contexts, and flush them during normal window overflow and
underflow handling rather than flushing them at transition time.

Independent from our event scheme, David Probert has developed a similar event
mechanism for SPACE [Probert et al., 1991]. In his thesis he describes an efficient
cross-domain mechanism for the SPARC [Probert, 1996]. His implementation does not
use register windows and thereby eliminates a lot of the complexity of the IPC code†.
Unfortunately, by not using register windows you lose all the benefits of leaf optimiza-
tions. In our experience this leads to a considerable performance degradation. The
Orca group reported a performance degradation which in some cases ran up to 15% for
their run time system and applications [Langendoen, 1997].

� ���������������������������

†David Probert does mention in his thesis that he did work on a version for register windows but aban-
doned that work after a failed attempt.

62 Kernel Design for Extensible Systems CHAPTER 3

The SPARC processor consists of an integer unit (IU) and a floating point unit
(FPU) [Sun Microsystems Inc., 1992]. The IU contains, for the V8 SPARC, 120 gen-
eral purpose 32-bit registers. Eight of these are global and the remaining 112 are
organized into 7 sets of 16 registers. These 16 registers are further partitioned into 8
input and 8 local registers.

The eight global registers are available at any time during the execution of an
instruction. Of the other registers a window of 24 registers is visible. Which window
is visible depends on the current window pointer which is kept by the IU. The register
window is partitioned into 8 input, 8 local, and 8 output registers. The 8 output regis-
ters overlap with the input registers from the adjacent window (see Figure 3.15).
Hence, operating systems, like SunOS and Solaris, have to flush between 96 and 480
bytes per protection domain transition.

outputs

locals

inputs

outputs

locals

inputs

outputs

locals

inputs

cwp + 1

cwp

cwp − 1

restore save

Figure 3.15. Overlapping register windows.

The SPARC IU maintains a current window pointer (cwp) and a window invalid
mask . The current register window pointer is moved forward by the restore instruc-
tion and backward by the save instruction. Each function prologue executes a save
instruction to advance the call frame on the stack; each epilogue executes a restore
instruction to get back to the previous call frame. The window invalid mask contains a
bit mask specifying which windows are valid and invalid. When a restore instruction
advances into an invalid window a window underflow trap is generated. Similarly, a
save instruction generates an overflow trap. These traps will then restore the next or
save the previous register window and adjust the window invalid mask appropriately.
At least one window is invalid and acts as a sentinel to signal the end of the circular
buffer.

The general idea behind the efficient register window handling is to keep track of
the ownership of a register set. The ownership is kept in an array that parallels the on-
chip register windows. The array contains the hardware context number of the MMU
context to which a register window belongs. On context switches, we denote the own-

SECTION 3.4 Paramecium Nucleus 63

ership change and mark the window of the old context as invalid and proceed. Marking
it as invalid prevents other, possibly a user context, from accessing its contents.

The scenario above is slightly more complicated due to the fact that register win-
dows overlap. That is, the 8 output registers in a window are the 8 input registers in the
next window. They can therefore be modified. Rather than skipping two register win-
dows, the 8 input registers are saved for trap events and restored when they return.
There is no need to save them for other events because of the SPARC procedure call
conventions. Violating these conventions only impacts the callee not the caller.

Unlike most operating systems, which flush all register windows, none of the
register windows are saved to memory on a context switch. This is delayed to the nor-
mal window overflow handling which is performed as part of a normal procedure call.
For very fast interrupt handling, e.g., active message handling or simple remote opera-
tions, the interrupt code should restricts itself to one register window and thus prevent
any saving to memory. The interrupt dispatching code ensures that at least one window
is available; this is the window the interrupt handler is using.

On a return from a context switch, the reverse takes place. The invalid bit for the
window where the context switch took place is cleared in the window invalid mask.
The new MMU context is set to the value taken from its ownership record. During
window overflow and underflow handling the ownership array and the window invalid
mask are appropriately updated, especially where it involves invalid windows which
are caused by context switches.

More formally, we keep the following invariants during context switch, window
overflow, and underflow handling†:

there is only one invalid window i for which owner i = −1 (1)

This statement defines the empty window condition. At all times a single win-
dow remains empty because of the overlapping register window sets. This window is
marked invalid and has the owner −1 which is especially reserved for the empty win-
dow slot.

if window i is invalid then owner i is defined (2)

This statement defines so called transition slots. These are window slots which
are marked invalid and are not the empty window slot. For these slots the ownership is
defined. A transition slot denotes a transition between two MMU contexts, the next
window beyond the transition belongs to the new context.

if window i is invalid then







owner i −1 is defined

owner i +1 is defined
(3)

� ���������������������������

†Without loss of generality we omit the mod NWINDOWS for the register window indices.

64 Kernel Design for Extensible Systems CHAPTER 3

This condition defines that the ownership of the window slot surrounding an
invalid window are defined. The window underflow, overflow, and cross protection
domain transition code carefully preserves these invariants.

Describing the exact details -including all the pathological cases when traps end
up in invalid windows- of the protection domain transition, underflow and overflow
handling is beyond the scope of this thesis. However, in order to illustrate its complex-
ity, the steps necessary to perform a window overflow trap, i.e., trying to save a frame
when the window is full, are show in Figure 3.16.

window_overflow:
compute new window invalid mask
save // get into next window
if (%sp unaligned) // catch misalignments

handle error
set MMU to ignore faults // do not trap on faults
set MMU context to owner[cwp] // owner of this frame
if (owner[cwp]) // user stack frame

verify stack lies in user space
save registers to memory
set MMU context to current // back to current context
if (MMU fault) handle error // did a fault occur?
set MMU to raise faults // allow faults again
restore // get into original window
clear registers // clear any residue
rtt // return from trap

Figure 3.16. Window overflow trap handling pseudo code.

Conceptually the handling of a window overflow trap is straightforward: 1) com-
pute the new window invalid mask, 2) get into the window that needs to be saved, 3)
save 16 registers into memory that belongs to the owning context, 4) get back to the
previous window, 5) return from trap. Unfortunately, a SPARC V8 CPU does not
allow nested traps and will reset the processor on a double fault. We therefore have to
inline all the code that guards against faults such as alignment and memory violations.

Despite the complications of register window handling our technique for register
window handling works reasonably well. On our target platform, a 50 MHz
MicroSPARC, the time it took to make a cross protection domain event invocation to
the kernel, i.e., a null system call, was 9.5 µsec as opposed to 37 µsec for a similar
operation on Solaris. A detailed analysis of the IPC performance is presented in
Chapter 6. The null system call performance could conceivably be improved, since the
code got convoluted after the initial highly tuned implementation.

SECTION 3.4 Paramecium Nucleus 65

Register window race condition
Inherent in the SPARC register window architecture is a subtle race condition

that is exposed by our event driven architecture. Ordinarily, when an interrupt occurs
the current thread of control is preempted, the register window is advanced into the
next window, the preempted program counter and program status register are saved in
the local registers in that new window and the program counter is set to the address of
the low-level interrupt handler where execution continues. To return from an interrupt
the program status register and the program counter are restored into the appropriate
registers and a return from trap is issued after which the preempted thread continues
execution. Now, consider the following code sequence to explicitly disable interrupts
on a SPARC CPU:

mov %psr, %l0 ! 1: get program status word into %l0
andn %l0, PSR_ET, %l0 ! 2: turn off enable trap bit
mov %l0, %psr ! 3: set %l0 to program status word

This is the standard sequence of loading the program status register, masking out
the enable trap bit, and setting it back. On a SPARC this requires three instructions
because the program status register cannot be manipulated directly.

Since the program status register also contains the current window pointer an
interesting race condition occurs. When an interrupt is granted between instructions 1
and 2 there is no guarantee in our event driven architecture that it will return in the
same register window as before the interrupt. The reason for this is the event branch
operation that short cuts event invocations without unwrapping the actual call chain.
Note that all other state flags (e.g condition codes) and registers are restored on an
interrupt return.

This race condition can be solved by using the property that interrupts are impli-
citly disabled when a processor trap occurs and setting the interrupt priority level. The
interrupt priority level is stored in the program status register and controls which exter-
nal sources can interrupt the processor. Groups of devices are assigned an interrupt
priority level and when the current processor level is less than the device the interrupt
is granted. The highest interrupt level is assigned to a nonmasking interrupt signaling a
serious unrecoverable hardware problem. Consequently the highest priority can be
used to effectively disable interrupts.

The race free implementation of disabling interrupts consists of a trap into the
kernel (disabling the interrupts) followed by setting the high interrupt priority level
(effectively disabling the interrupts) and return from the trap (enable interrupts again).
Of course, the code for this implementation has to prevent that an arbitrary user pro-
gram can disable interrupts at will. This is achieved by checking the source of the
caller. The kernel is allowed to manipulate the interrupt status, any user process is not.

Other operating systems, like SunOS, Solaris, and Amoeba do not suffer from
this race condition because of their two phase interrupt model (see Figure 3.17). The
hard level interrupt handler deals with the interrupt in real time but does little more
than querying the device and queuing a soft level interrupt. That is, no operations that

66 Kernel Design for Extensible Systems CHAPTER 3

thread of control

interrupt handler

thread of control

timetime

low−level
handler

high−level
handler

one phase interrupt model two phase interrupt model

Figure 3.17. One vs. two phase interrupt models.

might change the current window pointer, like thread switches or long jumps, take
place. The soft level interrupt handler gets called from the scheduler and can make
current register window changes.

In the next section we discuss proxy interface invocations which allow object
interfaces to be invoked from contexts that do not implement the actual object. The
underlying technique for this is the event mechanism described above.

3.4.5. Naming and Object Invocations
Central to Paramecium is the name service from which interface pointers are

obtained. Since this service is such an essential part of Paramecium it is implemented
by the base kernel. The name server supports the name space mechanisms used by the
object model, see Chapter 2, and a number of Paramecium specific additions. These
additions provide support for multiple protection domains.

The object model name space is a single hierarchical space which stores refer-
ences to all instantiated objects. Extending it to multiple protection domains raises the
following issues:

� How to integrate the name space and multiple protection domains? Either
each protection domain is given its own name space, which is disjoint from
other domains, or there is a single shared name space where each protection
domain has its own view on it.

� How are interfaces shared among multiple protection domains?

In Paramecium we decided to augment the name space mechanism by giving
each protection domain a view of a single name space tree. This view consists of a
subtree where the root is the start of the name space tree for the protection domain.
Protection domains can traverse this subtree but never traverse up beyond their local

SECTION 3.4 Paramecium Nucleus 67

root (see Figure 3.18). As is clear from this figure, the name space tree for a protection
domain also contains as subtree the name space for the children it created.

/

nucleus contexts

events virtual ... jnucleus

nucleus devices program

/

monitor... tty

nucleus services devices program

/

thread counter fifo

contexts

exec_contextmailfs...

/

services program program

fifofs fifo

/

Daemon

daemon

Java nucleus

Kernel

Mail Executable
content

Figure 3.18. Paramecium name spaces. Each context has its own name space

tree, here indicated by the dashed box. The contexts themselves form a tree

with the kernel at the root.

Organizing the name space as a single tree rather than multiple disjoint trees
make the management easier and more intuitive. For example, the initial name space
for a protection domain is empty. It is created and populated by its parent, which
designates one of its subdirectories as the root for the new protection domain. The
parent can link to interfaces in its own subtree or install new interfaces that refer to its
own objects. Since the kernel has full view of the name space, kernel components can
access any interface in the system, including those that are private to the kernel.

When a request is made to bind to an interface that is not implemented by the
requesting address space, e.g., caused by a parent that linked one of its interfaces, the
directory server will automatically instantiate a proxy interface. A proxy interface is
an interface stub which turns its methods into IPCs to the actual interface methods in a
different protection domain. Upon completion of the actual method, control is
transfered back to the invoking context. This method is similar to surrogate objects in

68 Kernel Design for Extensible Systems CHAPTER 3

network objects [Birrell et al., 1993], proxy objects by Marc Shapiro [Shapiro, 1986],
and their implementation in COOL [Habert et al., 1990].

A proxy interface consists of an ordinary interface table with the methods point-
ing to an empty virtual page and the state pointer holding the method index. Invoking
the method causes a page fault on this empty page and transfers control to the interface
dispatch routine in the receiving domain. This dispatch handler will use the index and
invoke the appropriate method on the real object. The proxy interface is set up the first
time a party binds to it.

For example, consider see Figure 3.19, where the write method is called on a
proxy interface in context 1. Calling it will cause control to be transfered to address
0xA0000000 which is invalid. The handler for this fault event is the interface
dispatcher in context 2. The dispatcher will lookup the actual interface using the fault
address that is passed by the kernel as a parameter and invoke the write method on the
actual interface and return control upon completion. The parameters are passed in
registers and in previously agreed upon shared memory segments.

0xA0000000

0xA0000000

0xA0000000

open

close

write

write

read

close

open

0x408F0

0x408F0

Instruction fault on 0xA0000000

Interface dispatch handler

0x408F0

Kernel

0xA0000000

0

1

2

3

User context 2 (actual interface)User context 1 (proxy interface)

State

read

0xFFFFFFFF

0xC0000000

0xA0000000

0x0

0x408F0

Method

Method State

Figure 3.19. A proxy interface method invocation.

In the current implementation, which is targeted at user/kernel interaction, no
effort is made to swizzle [Wilson and Kakkad, 1992] pointer arguments. The kernel

SECTION 3.4 Paramecium Nucleus 69

has full access to user level data anyway. For user to user interaction the current
implementation assumes that the pointers to shared memory regions are setup prior to
invoking the method. For a more transparent mechanism the IDL has to be extended
using techniques like those used in Flick [Eide et al., 1997] or use full fledged com-
munication objects as in Globe [Van Steen et al., 1999]. Neither have been explored in
Paramecium.

The name service provides standard operations to bind to an existing object refer-
ence, to load an object from the repository, and to obtain an interface from a given
object reference. Binding to an object happens at runtime. To reconfigure a particular
service, you override its name. A search path mechanism exists to control groups of
overrides. When an object is owned by a different address space the name service
automatically instantiates proxy interfaces.

For example, consider the name space depicted in Figure 3.16. Here the jnucleus

program created two subdirectories mail and exec_content. The first contains the mail
application and the second is the executable content, say a Java [Gosling et al., 1996]
program. By convention the subtrees for different protection domains are created
under the /contexts directory. The jnucleus domain populated the name space for mail

with a services/fs interface that gives access to the file system and a program/fifo inter-
face that is used to communicate with the executable content. The executable context
domain, exec_content, only has access to the FIFO interface program/fifo to communi-
cate with the mail context. It does not have access to the file system, or any other ser-
vice. The mail context has access to the file system but not to, for example, the counter
device devices/counter.

To continue this example, assume that the FIFO object is implemented by the
jnucleus context. The name program/fifo in the contexts mail and exec_content is a
link to the actual FIFO object in the jnucleus context. When the exec_content context
binds to program/fifo by invoking bind on the name server interface (see Figure 3.20).
The name server looks up the name and determines that it is implemented by a different
protection domain, in this case jnucleus, and will create a proxy interface for it. How
proxies are created is explained below.

The name server implements the interface in Figure 3.20. This interface can be
divided into two parts: manipulations and traversal operations. The former manipulates
the name space and the latter examines it. Most operations work on a current directory,
called a name server context, which is maintained by the application and passed as a
first parameter. To prevent inconsistencies, we made all the name space operations
atomic and ensured that any interleaving of name space operations will still results in a
consistent name space.

The bind operation searches the name space for a specified name starting in the
current context using the standard search rules. These search rules are described in
Chapter 2. To register an interface to an object, the register operation is used. The
map operation loads an object from a file server and maps it into the context specified
by the where parameter. When where is zero, it is mapped into the current context.

70 Kernel Design for Extensible Systems CHAPTER 3

� ���

Method Description� �� ���

interface = bind(naming_context, name) Bind to an existing name
� ���

unbind(naming_context, interface) Unbind an interface
� ���

interface = map(naming_context, name, file, where) Instantiate an object from a file
� ���

register(naming_context, name, interface) Register an interface
� ���

delete(naming_context, name) Delete a name
� ���

override(naming_context, to_name, from_name) Add an override (alias)
� ���

new_naming_context = context(naming_context, name) Create a new context
� ���

status(naming_context, status_buffer) Obtain status information
� ���

naming_context = walk(naming_context, options) Traverse the name space tree
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.20. Name service interface.

When an object is loaded into the kernel, it will check the object’s digital signature as
described in Section 3.3. For convenience, the current implementation uses a file name
on an object store to locate an object representation. For this the kernel contains a
small network file system client using the trivial file transfer protocol and UDP. A
pure implementation should pass on a stream object rather than a file name. All three
methods described above return a standard object interface to the object at hand or nil
if none is found.

The unbind and delete operations remove interfaces from the name space either
by interface pointer or name. The main difference between the two operations is that
unbind decrements a reference count kept by bind and only deletes the name if the
count reaches zero. Delete on the other hand forcefully removes the name without con-
sulting the reference count. Introducing a link in the name space is achieved by the
override operation, and the context operation creates a new context.

Examining the name space is achieved by the status and walk operations. The
status operation returns information about an entry. This includes whether the entry is
a directory, an interface, an override, or a local object. The walk operation is used to
do a depth first walk of the name space starting at the specified entry and returning the
next one. This allows all entries to be enumerated. The status and walk operations are
the only way to examine the internal representation of the name space.

SECTION 3.4 Paramecium Nucleus 71

3.4.6. Device Manager
The Paramecium kernel does not contain any device driver implementations.

Instead, drivers are implemented as modules which are instantiated on demand either in
the user or the kernel address space. The advantage of user controlled device drivers is
that they can be adapted to better suite the abstractions needed by the applications. In
addition, running device drivers outside the kernel in their own context provides strong
fault isolation. Unfortunately, the kernel still needs to be involved in the allocation of
devices since they exhibit many inherent sharing properties. Hence, the kernel contains
a device manager that controls the allocation of all the available devices and provides a
rudimentary form of device locking to prevent concurrent access.

The interface of the device manager is modeled after the IEEE 1275 Open Boot
Prom standard [IEEE, 1994]. Devices are organized in a hierarchical name space
where each node contains the name of the device, its register locations, its interrupts,
and a set of its properties. These properties include, device class, Ethernet address,
SCSI identifier, etc. Examples of device names are counter for the timer device, le for
the Lance Ethernet device, and esp for the SCSI device.

� ���

Step Action Description� �� ���

1 Allocate DMA (ledma) device Obtain an exclusive lock on this device
� ���

2 Get device registers Used to communicate to the ledma device
� ���

3 Allocate Ethernet (le) device Obtain an exclusive lock on this device
� ���

4 Get device registers Used to communicate to the le device
� ���

5 Get interrupt event Device interrupts generate this event
� ���

6 Allocate buffers Transmit and receive buffers
� ���

7 Map buffers into I/O space Allow le device to access the buffers
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.21. Steps involved in allocating an Ethernet device.

In Figure 3.21 we show the steps our Ethernet network device driver has to per-
form in order to access the actual network hardware. It first has to allocate the DMA
ASIC (ledma), get its device registers, and then configure it appropriately. Then the
device driver has to allocate the actual network device (le), get access to its device
registers an obtain its interrupt event. The later is raised whenever a receive or
transmit interrupt is generated by the hardware. The driver then proceeds by allocating
the transmit and receive buffers which are then mapped into the I/O space which makes
them available to the device hardware.

The steps above are all captured in the device interface which is obtained from
the device manager (see Figure 3.22). This interface gives access to the device regis-
ters, using the register method, by mapping them into the requestor’s address space and

72 Kernel Design for Extensible Systems CHAPTER 3

assists in setting up memory mapped I/O areas, using map and unmap methods. The
device interrupts are accessed using the interrupt method. They return the event name
for the interrupt. Additional properties, such as Ethernet address, SCSI identifier, or
display dimensions are retrieved using the property method.

� ���

Method Description� �� ���

virtaddr = register(virthint, index) Get device register address
� ���

event_id = interrupt(index) Get device interrupt event
� ���

virtaddr = map(address, size) Map memory into device I/O space
� ���

unmap(virtaddr, size) Unmap memory from device I/O space
� ���

property(name, buffer) Obtain additional device properties
� ���
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.22. Device interface.

Depending on a per device policy the device manager enforces an exclusive lock-
ing strategy or a shared locking strategy. Most devices are exclusively locked on a first
come first served basis. That is, the first driver claiming the device will be granted
access. Any further requests by drivers from different address spaces are denied until
the device is released. The allocation of some devices implies the locking of others.
For example, allocating the Lance Ethernet chip also locks the DMA ASIC controlling
the Lance DMA channels.

Memory mapped I/O regions, the memory areas to which the device has direct
access (DMA), are mapped and unmapped through the device interface. These regions
contain device initialization blocks or DMA-able memory regions. The sun4m archi-
tecture supports a 4 GB address space but some devices, such as the Ethernet hardware,
are only capable of handling 16 MB. Therefore, the sun4m architecture has a separate
I/O MMU that maps the 32-bit host address space to the 24-bit device address space.
The map method creates this mapping.

The sun4m I/O MMU is a straightforward translation table which maps I/O
addresses to physical memory page addresses. Aside from this mapping between two
spaces, it is also used for security. A device cannot access a page when it is not
mapped into the I/O MMU translation table. A very simple and useful extension would
be to add support for multiple contexts and possibly read/write protection bits. This
would make it possible to share devices that use a single shared resource such as DMA.
Currently, when a single device is allocated that uses DMA all devices that use DMA
are locked because the DMA controller is a single shared resource. By using multiple
translation tables, one for each protection domain, each driver could manage its own
DMA space, i.e., the memory area from which the device can issue DMA requests,

SECTION 3.4 Paramecium Nucleus 73

without interference from others. Even finer grained protection could be obtained by
using the protection bits.

A system that is akin to this is the secure communications processor designed in
1976 by Honeywell Information Systems Inc. for the US Air Force [Broadbridge and
Mekota, 1976]. This device sat between the main processor and the I/O bus and
enforced a Multics ring style protection scheme [Organick, 1972] for accessing dev-
ices. It was used in SCOMP [Bonneau, 1978], the first system to get an Orange Book
A1 security rating.

3.4.7. Additional Services
Besides the five services described in the sections above, two minor services

exist. These are implemented in the kernel because they rely on internal kernel state.
These services are a primitive identification service and the random number generator.

The identification interface returns the name (i.e., public resource identifier) of
the context that caused the event handler to be invoked. It does this by examining the
last entry on the invocation chain. Using the context name an application can imple-
ment authentication and enforce access control. More complicated forms of identifica-
tion, like traversing the entire invocation chain to find all delegations, have not been
explored.

Obtaining strong random numbers without random number hardware support is
one of the hardest quests in computer science. In Paramecium strong random numbers
are especially important because they are the protection mechanism against guessing or
fabricating resource identifiers. Paramecium uses a cryptographically pseudo random
number generator [Menezes et al., 1997]. In this scheme the random numbers are
taken from an ordinary congruental modulo generator after which the result is passed
through a one way function. The result of this function is the final random number and
cannot be used to determine the state of the generator.

The algorithm above reduces the problem to generating a good initial seed for the
congruental modulo generator. This seed is taken from as many high entropy sources
as possible, for which the kernel is in the best position to obtain them. The initial seed
is based on the kernel’s secret key, high resolution timer, total number of interrupts
since kernel instantiation, etc. To prevent long sequences of dependent random
numbers the generator is periodically, currently after 1,000 random number requests,
reinitialized with a new seed. Our generator passes the basic χ 2 random tests; more
advanced tests have not been tried.

All the interfaces exported by the Paramecium kernel are listed in Figure 3.23.
They comprise the four key abstractions supported by the kernel. These are address
space and memory management, event management, name space management, and
device management. An additional interface provides access to the secure random
number generator.

74 Kernel Design for Extensible Systems CHAPTER 3

� ���

Subsystem Exported interface(s)� �� ���

Context interface

Physical memory interface

Virtual memory interface

Address space and memory

management

� ���

Event interface

Execution chain interface

Authentication interface

Event management

� ���

Name service interfaceName space management
� ���

Device interfaceDevice management
� ���

Random number interfaceMiscellaneous
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 3.23. Overview of the kernel interfaces.

3.5. Embedded Systems
One of the most interesting areas to deploy extensible operating systems is that

of embedded computer systems. Embedded computer systems typically run dedicated
applications and usually operate under tight memory and processing cycles constraints.
Examples of embedded computer systems are manufacturing line control systems,
secure cryptographic coprocessors, network routers, and personal digital assistants
(PDAs). All of these systems typically consist of a single-board computer with special-
ized I/O devices and its operating system and application software in (flash) ROM.

Embedded devices typically operate under tight memory and processing cycles
constraints, because they are either manufactured under certain cost constraints or
should work within certain environmental constraints. The later includes constraints on
power consumption, battery life, and heat dispensation. Each of these dictate the
amount of memory and computer cycles available on an embedded device. It is there-
fore desirable to fine tune the operating system, that is the kernel, and support services,
to a bare minimum that is required by the embedded device and its applications. For
example, most embedded applications do not need an extensive file system, virtual
memory system, user authentication, or even protection domains.

To investigate the impact of embedded systems on the Paramecium kernel we
have ported it to a Fujitsu SPARCLite [Fujitsu Microelectronics Inc., 1993] processor
with 4 MB of memory. The processor is a SPARC V8 core lacking multiply/divide,
floating point, and MMU support. The processor does distinguish between supervisor
and user mode but this is useless for protection since there is no MMU support. That
is, a user mode program can rewrite the interrupt table and force an interrupt to get into
supervisor mode. At best it provides an extra hurdle to prevent run-away programs
from creating havoc.

SECTION 3.5 Embedded Systems 75

Since our embedded hardware does not support protection domains we rewrote
the kernel to exclude all support for different hardware contexts. This resulted in a
code reduction of 51%. Most of this reduction could be attributed to: 1) removal of
context, virtual, and physical memory management; 2) removal of proxy interface gen-
eration; and 3) a bare bones register window handling mechanism. This dramatic
reduction also underscores Paramecium’s design principle that the kernel’s most
important function is protection.

Applications that do not require access to the removed interfaces ran without any
modification. For those that did require them, such as the shell to create new
processes, a dummy component was loaded first. This component created the missing
interfaces and reported back that only one hardware context existed. By using this
component to provide the missing interfaces the applications did not have to be modi-
fied to run on the embedded system.

At first glance it appears that Paramecium is very suited for embedded systems.
There are, however, two problems: integrated into Paramecium is the concept of
dynamic loading. Even though this could be useful for updates, most embedded sys-
tems lack connectivity or need to be self contained. A second problem is that Parame-
cium currently lacks any real-time guarantees [Burns and Wellings, 1990]. Soft real-
time guarantees, such as earliest dead-line first (EDF), are easy to implement in the
thread scheduler. Hard real-time guarantees are much harder to provide. In theory it
should be possible since Paramecium’s native kernel interfaces do not block and the
application can tightly control any interrupt. Most real-time operating systems such as
QNX [Hildebrand, 1992] and VxWorks [Wind River Systems Inc., 1999] provide only
soft real-time guarantees.

3.6. Discussion and Comparison
The development of Paramecium was the result of our experience with the

Amoeba distributed operating system kernel. With it, we try to push the limits of ker-
nel minimalization and the dynamic composition of the system as whole. Our Amoeba
experiences showed that, although a minimal kernel is clearly desirable, some applica-
tion specific kernel extensions can dramatically improve the application’s performance.
For this reason we explored kernel extensibility. To make kernel extensibility as
straightforward as possible we used a component as a unit of extensibility and used a
trust relationship to express the confidence we have in the safety of the extension.

In retrospect, kernel extensions are hardly ever used in Paramecium, at least not
for the applications we explored. Either the application and all its run-time com-
ponents are instantiated as separate user processes or all reside in the kernel address
space. Care has been taken to provide the same environment in the kernel as well as
user address space such that components are unaware in which space they are instan-
tiated. This was very beneficial for the embedded version of Paramecium, here all
components essentially run in the kernel address space. A similar experience has been
reported for application specific handlers (ASHes) in ExOS [Kaashoek, 1997].

76 Kernel Design for Extensible Systems CHAPTER 3

Paramecium’s event mechanism is similar to Probert’s scheme in SPACE [Pro-
bert et al., 1991] and Pebble [Gabber et al., 1999]. The performance of a user-kernel
event invocation, about 9.5 µsec, is 4 times faster than a Solaris system call on the
same hardware. This is relatively slow compared to contemporary systems such as
ExOS and L4/LavaOS. The main reason for this are the hardware peculiarities of the
SPARC processor. On the other hand, Pebble showed that very reasonable results can
be achieved on the Intel architecture. A major drawback of the preemptive event
model is that all software should be aware that it can be preempted and should properly
synchronize shared data accesses. Most of these idiosyncrasies are hidden by the
thread package but programming can be quite tricky in cases where this package is not
used.

Paramecium shares many traits with other operating systems and in some areas it
is fundamentally different. The following subsections give a per operating system
comparison for the systems that share the same philosophy or techniques as Parame-
cium. In order we compare ExOS, SPIN, Scout, Flux OSKit, L4/LavaOS, Pebble, and
SPACE.

ExOS/ExoKernel
Paramecium and ExOS [Engler et al., 1994] have similar goals but are very dif-

ferent in their design philosophy. ExOS securely multiplexes the hardware to the
application program. Hence the application binary interface (ABI) represents the
underlying hardware interface rather than the more traditional system call interface.
The operating system functionality itself is situated in libraries, called library operating
systems, that are linked together with the applications.

The Exokernel approach should not be confused with the virtual machine system
360/370 architecture from IBM [Seawright and Mackinnon, 1979]. The 360/370 VM
architecture provides an idealized hardware abstraction to the application rather than
providing access to the actual hardware.

The advantage of the ExOS approach is that applications have very low latency
access to the underlying hardware and a complete control over the operating system
and its implementation since it is part of the application’s address space. Applications
can replace, modify, and use specialized library operating systems for specific applica-
tion domains [Engler et al., 1995]. For example, special purpose library operating sys-
tems exist for parallel programming, UNIX emulation, WWW servers, etc.

The ExOS design philosophy differs in two major ways from traditional operat-
ing systems and these are also the source of its problems. The main problem with
ExOS is the sharing of resources. Resources that are used by a single application, for
example a disk by a file server, are relatively straightforward to manage by that appli-
cation. However, when the disk is shared by multiple noncooperating applications,
there is a need for an arbiter. The most obvious place for the arbiter to reside is the
kernel; less obvious is its task given that it should only securely demultiplex the under-
lying hardware.

SECTION 3.6 Discussion and Comparison 77

An arbiter for a disk has to implement some sort of access control list on disk
blocks or extents. For this the Exokernel uses UDFs (untrusted deterministic functions)
which translate the file system metadata into a simple form the kernel understands.
The kernel uses this function, owns −udf T [Kaashoek et al., 1997], to arbitrate the
access to disk blocks and enforce access control. A different method of arbitration is
used for a network device. Here the Exokernel uses a packet filter, DPF [Engler and
Kaashoek, 1996], to demultiplex incoming messages. If we were to add support to the
Exokernel for a shared crypto device with multiple key contexts, we would have to add
a new arbitration method for managing the different key contexts. It seems that each
device needs its own very unique way of arbitration to support sharing. Even the sim-
ple example of only one file system using the disk and one TCP/IP stack using the net-
work is deceptive. Both use DMA channels which is a shared resource.

Even if DMA requests can be securely multiplexed over multiple DMA channels
there is still the open issue of the DMA address range. On most systems a DMA
request can be started to and from any physical memory location, hence compromising
the security of the system. Preventing this requires secure arbitration on each DMA
request which has a serious performance impact.

A second, minor, problem with the Exokernel approach is that the applications
are very machine dependent since much of the operating system and device driver
knowledge is built in. This is easily resolved, however, by introducing dynamic load-
ing the machine specific library operating systems at run time.

SPIN
SPIN [Bershad et al., 1995b], is an operating system being developed at the

University of Washington. It combines research in operating systems, languages, and
compilers to achieve:

� Flexibility . Arbitrary applications may customize the kernel by writing and
installing extensions for it. These extensions are dynamically linked into the
kernel’s address space. Potentially, each procedure call can be extended.
Extensions are written in Modula3 [Nelson, 1991] a type-safe language.

� Safety . The dynamic linking process enforces the type-safe language proper-
ties and restricts extensions from invoking critical kernel interfaces. This iso-
lates run-away extensions. To determine whether an extension was generated
by a trusted compiler it uses a straightforward digital signature mechanism.

� Performance . Application-specific extensions can improve the performance
because they have low latency access to system resources and services
without having to cross protection boundaries.

Just like Paramecium, SPIN is an event based system, but unlike our system, pro-
cedure calls are event invocations too. SPIN extensions are extra event handlers that
can be placed at any point where a function is called, hence they provide a very fine
grained extension mechanism. Event invocations are handled by the event dispatcher.

78 Kernel Design for Extensible Systems CHAPTER 3

This dispatcher enforces access control between components and also evaluates event
guards. Event guards are referential transparent [Ghezzi and Jazayeri, 1987] and deter-
mine the order in which events should be invoked.

To improve the performance of the system they explored compiler optimizations
and run time code generation techniques. Despite these optimizations the microbench-
mark performance numbers for SPIN do suggest there is room for further improvement
(on a 133 MHz Alpha AXP 3000/400, a cross address space call is 84 µsec and pro-
tected in-kernel calls are 0.14 µsec).

Paramecium and SPIN both share the same high-level goals. The actual imple-
mentation and design philosophy are radically different.

Scout
Scout [Montz et al., 1994] is a communication-oriented operating system tar-

geted at network appliances such as set-on-top boxes, network attached disks, special
purpose servers (web and file servers), or personal digital assistants (PDAs). These
network appliances have several unique characteristics that suggest re-thinking some of
the operating system design issues. These characteristics are:

� Communication-oriented . The main purpose of a network appliance is han-
dling I/O. Unlike traditional operating systems, which are centered around
computation-centric abstractions such as processes and tasks, Scout is struc-
tured around communication-oriented abstractions.

� Specialized/Diverse functionality . Network appliances are centered around
one particular function, such as recording and compressing video, which sug-
gest the use of an application specific operating system.

� Predictable performance with scarce resources . Network appliances are typi-
cally consumer electronic devices and to keep the cost down it cannot over-
commit resources to meet all the application requirements. The means that
the operating system has do a good job at providing predictable performance
under a heavy load.

The Scout operating system is centered around the concept of a path. A path is a
communication abstraction akin to the mechanisms found in the x-kernel [Hutchinson
et al., 1989]. Another important aspect of Scout is that it is configurable; a Scout
instance is generated from a set of building-block modules. Its framework is general
enough to support many different kinds of network appliances. The third important
aspect of Scout is that it includes resource allocation and scheduling mechanisms that
offer predictable performance guarantees under heavy load.

Scout is similar in philosophy to Paramecium, but Paramecium tries to be more
general-purpose. Unlike Scout, Paramecium is not primarily targeted at a particular
type of application. Our system therefore does not contain any built-in abstractions,
such as paths or allocation of scheduling mechanisms. Both systems are constructed
out of modules but Paramecium is constructed dynamically rather than statically.

SECTION 3.6 Discussion and Comparison 79

Furthermore, Paramecium uses a digital signature mechanism for extensions to
preserve kernel safety. Scout does not provide user-kernel mode protection, everything
is running in kernel mode, hence Scout does not attempt to provide any kernel safety
guarantees.

Flux OSKit
The Flux OSKit [Ford et al., 1997] is an operating builders toolkit developed at

the University of Utah. It consists of a large number of operating system component
libraries that are linked together to form a kernel. As its component model it uses a
derivative of COM [Microsoft Corporation and Digital Equipment Corporation, 1995].

The OSKit provides a minimal POSIX emulation within the kernel to enable the
migration of user-level applications. An example of this is a kernelized version of a
freely available Java Virtual Machine, Kaffe [Transvirtual Technologies Inc., 1998].
Other applications are a native SR [Andrews and Olsson, 1993] and ML [Milner et al.,
1990] implementation and the Fluke [Ford et al., 1996] kernel. The Fluke kernel is a
new operating system that efficiently supports the nested process model , which pro-
vides, among others, strong hierarchical resource management. The OSKit has also
been used to create a more secure version called Flask [Spencer et al., 1999] which
provides a flexible policy director for enforcing mandatory access policies.

The Flux OSKit and Paramecium share the ideas of a common model in which
components are written. Together these components form a toolbox from which the
kernel is constructed. Paramecium constructs the kernel dynamically while the OSKit
uses static linking. Using dynamic linking is useful in situations where the environ-
ment changes rapidly, such as personal digital assistants that run an MPEG player at
one moment and a game at the next while working under very tight resource con-
straints.

L4/LavaOS
LavaOS [Jaeger et al., 1998] and its predecessor L4 [Liedtke et al., 1997] are

microkernels designed by Jochen Liedtke. The kernel provides fast IPC, threads, tasks,
and rudimentary page manipulation. Their IPC is based on the rendez-vous concept
and occurs between two threads. Arguments are either copied or mapped.

L4/LavaOS achieves remarkable fast IPC timings [Liedtke et al., 1997]. For
example, the current LavaOS kernel on an Intel Pentium Pro achieves a user to user
domain transfer in about 125 cycles for small address spaces and about 350 cycles for
large address spaces. The difference in performance is due to a clever segment register
trick that prevents a TLB flush on an Intel Pentium Pro. This only works for small
processes that are smaller than 64 KB.

The L4/LavaOS designers do not believe in colocating services into the kernel
address space. Instead they keep the kernel functionality limited to a small number of
fixed services. Other services, such as TCP/IP and virtual memory, run as separate
processes on top of L4/LavaOS. To show the flexibility of the L4/LavaOS kernel

80 Kernel Design for Extensible Systems CHAPTER 3

researchers have modified Linux [Maxwell, 1999], a UNIX look alike, to run on top of
it. Throughput benchmarks showed that a L 4 Linux kernel achieves only a 5% degra-
dation compared to native Linux [Härtig et al., 1997]. This should be compared to a
factor of 7 for MkLinux [Des Places et al., 1996]. MkLinux is a similar attempt but
uses the Mach microkernel instead. Currently, work is on its way to separate the
monolithic Linux subsystem into a component based system. This is similar to the
multiserver UNIX attempt for Mach.

The L4/LavaOS kernel is substantially different from Paramecium. It provides
threads as its basic execution abstraction and synchronous IPC is based on rendez-vous
between threads. Paramecium uses events and is asynchronous. L4/LavaOS kernel
provides a clans and chiefs abstraction whereby among a group of processes one is
assigned as chief. This chief will receive all IPCs for the group and forward it to the
intended recipient [Liedtke, 1992]. This mechanism can be used to enforce access con-
trol, rate control, and load balancing. Paramecium does not have a similar mechanism.
In Paramecium events can have a variable number of arguments these are passed in
registers and spillage is stored on the handlers stack. In L4/LavaOS message buffers
are transfered between sender and recipient. This buffer is either copied or mapped.

In Paramecium threads are implemented as a separate package on top of the
existing kernel primitives. LavaOS provides them as one of its basic services.

Pebble
Pebble [Gabber et al., 1999] is a new operating system currently being designed

and implemented at Lucent Bell Laboratories by Eran Gabber and colleagues. Pebble’s
goals are similar to Paramecium: flexibility, safety, and performance. The Pebble
architecture consists of a minimal kernel that provides IPC and context switches and
replaceable user-level components that implement all system services.

Pebble’s IPC mechanism is based on Probert’s thesis work [Probert, 1996] which
in turn is similar to Paramecium’s IPC mechanism. Pebble does not have a concept for
generic kernel extensions but it does use dynamic code generation, similar to Synthesis
[Massalin, 1992], to optimize cross protection domain control transfers. These exten-
sions are written in a rudimentary IDL description. Like the L4/LavaOS designers, the
Pebble designers assume that their efficient IPC mechanism reduces the cost of making
cross protection domain procedure calls, and therefore obviates the need for colocating
servers in a single address space.

Since Pebble is still in its early development stage all the current work has been
focussed on its kernel and improving its IPC performance (currently 110-130 cycles on
a MIPS R5000). The replaceable user-level components are still unexplored.

SECTION 3.6 Discussion and Comparison 81

SPACE
SPACE [Probert, 1996] is more of a kernel substrate than an operating system. It

was developed by David Probert and John Bruno. SPACE focused on exploring a
number of key abstractions, such as IPC, colocating protection domains in a single
address space, threads, and blurring the distinction between kernel and user-level. It
did not consider extensibility. As pointed out in this chapter, a number of these ideas
were independently conceived and explored in Paramecium.

The SPACE kernel has been implemented on a 40 MHz SuperSPARC (super-
scalar) processor and does not use register windows. It achieves a cross protection
domain call and return (i.e., 2 portal traversals) of 5 µsec compared to 9 µsec for a
Solaris null system call on the same hardware. Probert claims in his thesis [Probert,
1996] that not using register windows results in a slow down of 5% for an average
application. In our experience this is more in the range of 15% [Langendoen, 1997]
due to the missed leaf call optimizations. Paramecium does use register windows
which adds a considerable amount of complexity to the event management code, but
still achieves a cross domain call of 9.5 µsec on much slower hardware. As a com-
parison, Solaris achieves 37 µsec for a null system call on the same hardware.

SPACE its thread model is directly layered on top of its portal transition scheme.
Since threads do not have state stored in register windows the context switches do not
require kernel interaction. Hence, there are no kernel primitives for switching and
resuming activation chains as in Paramecium.

Miscellaneous
Besides the operating systems mentioned above, Paramecium has its roots in a

large number of different operating system projects. Configurable operating systems
have long been a holy grail, and static configuration has been explored in object
oriented operating system designs such as Choices [Campbell et al., 1987], Spring
[Mitchell et al., 1994], and PEACE [Schröder-Preikschat, 1994]. Dynamic extensions
have first been explored for specific modules, usually device drivers, in Sun’s Solaris
and USL’s System V [Goodheart and Cox, 1994]. Oberon [Wirth and Gütknecht,
1992], a modular operating system without hardware protection, used modules and
dynamic loading features of its corresponding programming language to extend its sys-
tem.

Application specific operating systems include all kinds of special purpose
operating systems usually designed by hardware developers to support their embedded
devices such as set-on-top boxes, PDAs, and network routers. Examples of these
operating systems are QNX [Hildebrand, 1992], PalmOS [Palm Inc., 2000], and
VxWorks [Wind River Systems Inc., 1999].

Apertos [Lea et al., 1995] was an operating system project at Sony to explore the
application of meta objects in the operating system. Similar to ExOS, the central focus
was to isolate the policy in meta objects and the mechanism in the objects. Recovering
from extension failures in an operating system was the focus of Vino [Seltzer et al.,

82 Kernel Design for Extensible Systems CHAPTER 3

1996], it even introduced the notion a transactions that could be rolled back in case of a
disaster.

Events [Reiss, 1990; Sullivan and Notkin, 1992] have a long history for effi-
ciently implementing systems where the relation between components is established at
run time. They are used in operating systems [Bershad et al., 1995b; Bhatti and
Schlichting, 1995], windowing systems, and database systems. Paramecium’s event
mechanism is similar.

Paramecium uses sparse capabilities as resource identifiers. Capabilities have
been researched and used in many systems. An extensive overview of early capability
systems is given in [Levy, 1984]. Examples of such systems are Plessey System 250
[England, 1975], CAP [Wilkes and Needham, 1979], Hydra [Wulf and Harbison,
1981], KeyKOS [Hardy, 1995], AS/400 [Soltis, 1997], Amoeba [Tanenbaum et al.,
1986], and more recently Eros [Shapiro et al., 1999].

Notes
Part of this chapter was published in the proceedings of the fifth Hot Topics in

Operating Systems (HotOS) Workshop, in 1995 [Van Doorn et al., 1995].

SECTION 3.6 Discussion and Comparison 83

4

Operating System Extensions

This chapter describes a number of tool box components, such as a thread imple-
mentation, a TCP/IP implementation, and an active filter implementation. Tradition-
ally these services are part of the operating system kernel, but in Paramecium they are
separate components which are loaded dynamically on demand by applications that use
them. The advantage of implementing them as separate dynamic components is that
they are only loaded when needed, individual components are easier to test and the
individual components are amenable to adaptation when required.

The first example of a system extension component is our thread package. It
provides a migrating thread implementation with additional support for pop-up threads.
Pop-up threads are an alternative abstraction for interrupts and to implement them effi-
ciently, i.e., without creating a new thread for each interrupt, we have used techniques
similar to optimistic active messages [Wallach et al., 1995].

Our thread package can run either inside the kernel address space or as a com-
ponent of an user-level application, effectively forming a kernel-level or user-level
thread implementation. Kernel-level thread implementations typically require a user
application to make system calls for every synchronization operation. This introduces
a performance penalty. To overcome this penalty, we use a state sharing technique
which enables user processes to perform the synchronization operations locally without
calling the kernel while the thread package is still implemented inside the kernel.

A second example of a system extension component is our TCP/IP implementa-
tion. This TCP/IP network stack is a multithreaded implementation using the thread
package and pop-up threads described above. Central to the network stack implemen-
tation is a fast buffer component that allows copy-less sharing of data buffers among
different protection domains.

As a final example of system extensions we describe an active filter scheme
where events trigger filters that may have side effects. This work finds its origin in
some of our earlier ideas on intelligent I/O adapters and group communication using

84

active messages [Van Doorn and Tanenbaum, 1994]. In this chapter we generalize that
work by providing a generic event demultiplexing service using active filters.

The examples in this chapter show the versatility of our extensible nucleus. The
main thesis contributions in this chapter are: an extensible thread package with efficient
pop-up semantics for interrupt handling, a component based TCP/IP stack and an effi-
cient data sharing mechanism across multiple protection domains, and an active filter
mechanism as a generic demultiplexing service.

4.1. Unified Migrating Threads
Threads are an abstraction for dividing a computation into multiple concurrent

processes or threads of control and they are a fundamental method of separating con-
cerns. For example, management of a terminal by an operating system is naturally
modeled as a producer, the thread reading the data from the terminal and performing all
the terminal specific processing, and a consumer, the application thread reading and
taking action on the input. Combining these two functions into one leads to a more
complicated program because of the convolution of the two concerns, namely terminal
processing and application input handling.

In the sections below we will give an overview of our thread system for Parame-
cium and discuss the two most important design goals. These are:

� The ability to provide a unified synchronous programming model for events
and threads, as opposed to the asynchronous event model provided by the ker-
nel.

� The integration of multiple closely cooperating protection domains within a
single thread system.

The overview section is followed by a more detailed discussion on the mechan-
isms used to implement these design goals. These mechanisms are active messages and
pop-up threads and synchronization state sharing among multiple protection domains.

4.1.1. Thread System Overview
Traditionally operating systems provide only a single thread of control per pro-

cess, but more contemporary operating systems such as Amoeba [Tanenbaum et al.,
1991], Mach [Accetta et al., 1986], Windows NT [Custer, 1993] and Solaris [Vahalla,
1996] provide multiple threads of control per process. This enables a synchronous pro-
gramming model whereby each thread can use blocking primitives without blocking
the entire process. Systems without threads have to resort to an asynchronous program-
ming model to accomplish this. While such systems are arguably harder to program,
they tend to be more efficient since they do not have the thread handling overhead.

Reducing the overhead induced by a thread system has been the topic of much
research and even the source of a controversy between so called kernel-level and user-
level thread systems in the late 80’s and early 90’s (see Figure 4.1 for an overview of

SECTION 4.1 Unified Migrating Threads 85

the arguments). Kernel-level thread systems are implemented as part of the kernel and
have the advantage that they can interact easily with the process scheduling mechan-
ism. The disadvantage of kernel-level threads is that synchronization and thread
scheduling from an application requires frequent kernel interaction and consequently
adds a considerable overhead in the form of extra system calls. Examples of kernel-
level thread systems are Mach [Accetta et al., 1986], Amoeba, and Topaz [Thacker et
al., 1988]. A user-level thread system on the other hand implements the thread
scheduler and synchronization primitives as part of the application run-time system and
has a lower overhead for these operations. The disadvantage of user-level threads is
their poor interaction with the kernel scheduler, their poor I/O integration, and conten-
tion for the kernel if it is not thread aware. Thread-unaware kernels form a single
resource which allows only one thread per process to enter, others have to wait in the
mean time. Examples of user-level thread systems are FastThreads [Anderson et al.,
1989] and PCR [Weiser et al., 1989].

� ���

Kernel-level threads User-level threads� �� ���

Performance Moderate Very good
� ���

Kernel interaction Many system calls None
� ���

Integration with process management Easy Hard
� ���

Blocks whole process on page fault No Yes
� ���

Blocks whole process on I/O No Yes
� ���
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 4.1. Kernel-level vs. user-level threads arguments.

Various researchers have addressed the short comings of both thread systems and
have come up with various solutions [Anderson et al., 1991; Bershad et al., 1992]. One
solution is to create a hybrid version where a user-level thread system is implemented
on top of a kernel-level system. These systems, however, suffer from exactly the same
performance and integration problems. A different solution is scheduler activations
[Anderson et al., 1991] whereby the kernel scheduler informs the user-level thread
scheduler of kernel events, such as I/O completion, that take place. This approach pro-
vides good performance and integration with the rest of the system, but requires
cooperation from the application’s run-time system.

Unfortunately, user-level thread systems are built on the assumption that switch-
ing threads in user space can be done relatively efficiently. This is not generally true.
The platform for which Paramecium was designed, the SPARC processor
[Sun Microsystems Inc., 1992], uses register windows which need to be flushed on
every thread switch. Besides the fact that this is a costly operation since it may involve
many memory operations, it is also a privileged operation. That is, it can only be exe-

86 Operating System Extensions CHAPTER 4

cuted by the kernel. As shown in Figure 4.2, where we compare thread switching costs
for a user-level thread package on different platforms (only the SPARC processor has
register windows) [Keppel, 1993], these hardware constraints can have a serious
impact on the choice of thread system: user or kernel level. Namely, if you already
have to call the kernel to switch threads why not perform other functions while you are
there?

� ���

Platform Integer switch Integer+floating point

(in µsec) switch (in µsec)� �� ���

AXP 1.0 2.0
� ���

i386 10.4 10.4
� ���

MIPS R3000 6.2 14.6
� ���

SPARC 4-65 32.3 32.7
� ���
��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�

Figure 4.2. Comparison of thread switching cost (integer registers, and integer

plus floating point registers) for some well-known architectures [Keppel,

1993].

These architectural constraints dictate, to some degree, the design and the use of
Paramecium’s thread package. More specifically, the actual design goals of
Paramecium’s thread package were:

� To provide an efficient unified synchronous programming environment for
events and multiple threads as opposed to the asynchronous event model pro-
vided by the kernel.

� To provide an integrated model for closely cooperating protection domains
using a single thread system.

The key goal of our thread package is to provide a simpler to use synchronous
execution environment over the harder to use, but more efficient, asynchronous
mechanisms offered by the kernel. The thread system does this by efficiently promot-
ing events and interrupts to pop-up threads after which they behave like full threads.
The pop-up mechanism borrows heavily from optimistic active messages and lazy task
creation techniques which are described further below.

An important aspect of the thread package is enable a lightweight protection
model where an application is divided into multiple lightweight protection domains that
cooperate closely. This enables, for example, a web server to isolate the Java servlets
(i.e., little Java programs that execute on behalf of the client on the server) from the
server proper and other servlets using strong hardware separation. To support this
model, we need to provide a seamless transfer of control between cooperating protec-
tion domains and an efficient sharing mechanism for shared memory and synchroniza-

SECTION 4.1 Unified Migrating Threads 87

tion state. The former is provided by using migrating threads, a technique to logically
continue the thread of control into another protection domain, and the later is provided
by sharing the state as well as some of the internals of the synchronization state. The
resources are controlled by the server which acts as the resource manager.

The advantage of migrating threads is that they reduce the rendez-vous overhead
traditionally found in process based systems. Rather than unlocking a mutex or signal-
ing a condition variable to wakeup the thread in another process, the thread logically
continues, i.e. , migrates, into the other address space. Thread migration is further dis-
cussed below.

In line with Paramecium’s component philosophy and unlike most thread sys-
tems, Paramecium’s thread package is a separate module that can be instantiated either
in user space or kernel space. By providing the thread package as a separate module
rather than an integrated part of the kernel it is amenable to application specific adapta-
tions and experimentation. Unfortunately, due to a SPARC architectural limitation a
full user-level thread package is not possible so it uses the kernel chain mechanism (see
Section 3.4.4) to swap between different threads.

A key concern in multithreaded programs is to synchronize the access to shared
variables. Failure to properly synchronize access shared variables can lead to race con-
ditions . A race condition is an anomalous behavior due to an unexpected dependence
on the relative timing of events, in this case thread scheduling. To prevent race condi-
tions most thread packages provide one or more synchronization primitives. A brief
overview of the primitives provided by our thread package is given in Figure 4.3. They
range from straightforward mutex operations to condition variables.

In the next sections we discuss active messages which is the technique used to
implement pop-up threads. This discussion is followed by a section on thread migra-
tion and a section on synchronization state sharing. These are the key mechanisms
used by our thread package.

4.1.2. Active Messages
Active messages [Von Eicken et al., 1992] are a technique to integrate communi-

cations and computation. They provide very low-latency communication by calling the
message handler immediately upon receipt of the message. The address of the handler
is carried in the message header and the handler is called with the message body as
argument. The key difference between traditional message passing protocols is that
with active messages the handler in message header is called directly when the mes-
sage arrives. Usually, directly from the interrupt handler. Since the active messages
contains the handler address, it requires the receiver to trust the sender not to supply it
with an incorrect address.

Active messages provide low-latency communication at the cost of sacrificing
security and severely restricting the generality of the message handler. Since an active
message carries the address of its handler, conceivably any code could be executed on
receipt of the message, including code that modifies the security state of the receiving

88 Operating System Extensions CHAPTER 4

� ���

Primitive Description� �� ���

Mutexes A mutex is a mechanism to provide synchronized access to

shared state. Threads lock the mutex, and when it succeeds

they can access the shared state. Only one thread at the time

can access the state. Other threads either wait for the lock to

become free by polling the lock state or block after which

they are awakened as soon as the lock becomes available.
� ���

Reader/writer mutexes A reader/writer mutex is similar to an ordinary mutex but

classifies shared state access into read or write access. A

reader/writer mutex allows many readers but only one writer

at the time. A writer is blocked until there are no more

readers. This mechanism allows more concurrency than an

ordinary mutex operation.
� ���

Semaphores Semaphores allow up to a specified number of threads to

access the data simultaneously where each thread will decre-

ment the semaphore counter. When the counter reaches zero,

i.e., the limit is reached, the entering threads will block until

one of the threads releases the semaphore by incrementing the

count. Semaphores are useful for implementing shared

buffers where one semaphore represents the amount of data

consumed and the other amount of data produced. Mutexes

are sometimes referred to as binary semaphores.
� ���

Condition variables Condition variables are a mechanism to grab a mutex, test for

a condition and, when the test fails, release the mutex and

wait for the condition to change. This mechanism is espe-

cially useful for implementing monitors.
� ���

Barriers Barriers are a mechanism for a number of predetermined

threads to meet at a specific point in their processing. When a

thread meets the barrier it is blocked until all threads reach the

barrier. They then all continue. This is a useful mechanism to

implement synchronization points after, for example, initiali-

zation.
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 4.3. Overview of thread synchronization primitives.

system. These security problems are easily remedied by introducing an extra level of
indirection as in our work on active message for Amoeba [Van Doorn and Tanenbaum,
1994]. Here we replaced the handler address by an index into a table which contained
the actual handler address. The table was set up before hand by the recipient of the
active message. Unfortunately, the lack of generality proved to be a serious problem.

SECTION 4.1 Unified Migrating Threads 89

The active message handler is directly executed on receipt of the message and is
typically invoked from an interrupt handler or by a routine that polls the network. This
raises synchronization problems since the handler preempts any operation already exe-
cuting on the receiving processor. This can lead to classical race conditions where the
result of two concurrent processes incrementing a shared variable can be either 0, 1, or
2 depending on their execution schedule [Andrews and Olsson, 1993]. Hence, there is
a need to synchronize shared data structures. However, active message handlers are
not schedulable entities and can therefore not use traditional synchronization primi-
tives. For example, consider the case where an active message handler grabs a mutex
for which there is contention. It would have to block, but it cannot because there is no
thread associated with the handler. Various solutions have been proposed for this prob-
lem. For example, in our active message work for Amoeba, we associated a single lock
with an active message handler. When there was no contention for the lock the handler
would be directly executed from the interrupt handler. In the event of contention a
continuation would be left with the lock [Van Doorn and Tanenbaum, 1994]. This
approach made the handler code less restrictive than the original active message design,
but it was more restrictive than the elegant technique proposed by Wallach et al. called
optimistic active messages (OAM) [Wallach et al., 1995].

The optimistic active message technique combines the efficiency of active mes-
sages with no restrictions on the expressiveness of the handler code. That is, the
handler may use an arbitrary number of synchronization primitives and use an arbitrary
amount of time to process the handler. The technique is called optimistic in that it
assumes that the handler will not block on an synchronization primitive. If it does, the
handler will be turned into a full thread and rescheduled. Similarly, when the active
message handler has used its time-slice it is promoted to a full thread as well. This
technique can be thought of as a form of lazy thread creation [Mohr et al., 1992].

4.1.3. Pop-up Thread Promotion
In addition to the traditional thread operations discussed in section 4.1.1, we

added support to our thread system to handle pop-up threads. Pop-up threads are used
to turn events into full threads but with the exception that the thread is created on-
demand as in optimistic active messages [Wallach et al., 1995] and lazy task creation.
The pop-up thread mechanism can be used to turn any event into a full thread, not just
interrupt events, and are used to hide the asynchronous behavior of Paramecium’s
event scheme.

To illustrate this, Figure 4.4 shows a typical time line for the creation of a pop-up
thread. In this time line a thread raises an event and continues execution in a different
protection domain. At some point the event handler is promoted to a pop-up thread.
This causes a second thread to be created and the original thread will return from rais-
ing the event.

90 Operating System Extensions CHAPTER 4

thread

domain 2

domain 1

pr
ot

ec
tio

n
do

m
ai

ns

execution time

raise event

pop−up

new (pop−up) thread

old thread

Figure 4.4. Pop-up thread creation time line.

To further illustrate this, Figure 4.5 contains a code fragment of an event handler
from a test program. This handler is executed when its event is raised and it will per-
form certain test functions depending on some global flags set by the main program.
The main program is not shown in this figure. When the handler is invoked it will first
register itself with the thread system, using popup method, and mark the current thread
as pop-up (as with any event handlers are logically instantiated on top of the preempted
thread of control, see Section 3.4.4). Like optimistic active messages, if the event
handler blocks it will be promoted to a full thread and the scheduler is invoked to
schedule a new thread to resume execution. If the handler doesn’t block, it will con-
tinue execution and eventually clear the pop-up state and return from the event handler.
Clearing the pop-up state is performed by the thread destroy method, destroy.

More precisely, an event handler is promoted to a full thread when it is marked
as a pop-up thread and one of the following situation occurs:

1) The handler blocks on a synchronization variable. Each synchronization
primitive checks whether it should promote a thread before suspending it.

2) The handler exceeded the allocated scheduler time-slice. In this case the
scheduler will promote the handler to a full thread.

3) The handler explicitly promoted itself to a full thread. This is useful for dev-
ice drivers handling interrupts. A driver first performs the low-level interrupt
handling after which it promotes itself to a thread and shepherds the interrupt
through, for example, a network protocol stack.

SECTION 4.1 Unified Migrating Threads 91

void
event_handler(void)
{

thr−>popup("event thread");

if (lock_test) // grab mutex for which there is contention
mu−>lock();

if (timeout_test) // wait for time-slice to pass then promote
wait(timeout);

if (promote_test) // promote event immediately to a full thread
thr−>promote();

thr−>destroy();
}

Figure 4.5. Example of an event handler using pop-up threads.

The execution flow of our thread system is shown Figure 4.6. Normal threads
are started by the scheduler and return to the scheduler when they block on a synchron-
ization variable or are preempted. When an event is raised the associated pop-up
thread is logically executing on the preempted thread. If it doesn’t block, or is
preempted, it returns to the interrupted thread which continues normal execution. If it
does block, or is preempted, control is passed to the scheduler which promotes the
pop-up thread and disassociates it from the thread it was logically running on. These
two threads are then scheduled separately as any other thread.

thread

Popup

interrupt

return

Scheduler

preempt
run

preempt

run

schedule

Thread

schedule

Figure 4.6. Thread execution control flow.

Promoting a pop-up thread to a full thread consists of allocating a new thread
control block and detaching the event stack and replacing it with a new stack for the
next event. The current event stack, which has all the automatic storage and procedure

92 Operating System Extensions CHAPTER 4

activation records on it, is used as the thread stack. This obviates the need to copy the
stack and relocate the data structures and activation records.

The thread package uses a round-robin scheduling algorithm within a priority
queue. The package support multiple priority queues. When a pop-up thread is pro-
moted it is given the highest priority and the order in which they are registered (that is,
when they announced themselves to the thread system using popup) is preserved. The
latter is important for protocol stacks. For example, our TCP/IP implementation, which
is described in the next section, uses pop-up threads to shepherd incoming packets
through the TCP/IP stack. Failing to preserve the FIFO order in which the packets are
delivered would lead to disastrous performance problems.

4.1.4. Thread Migration and Synchronization
Thread migration is an integral part of our thread system and is directly based on

the underlying event chain mechanism. That is, when a thread raises an event, control
is transfered to a different protection domain where it resumes execution. The logical
thread of control is still the same and it is still under control of the scheduler. Raising
an event does not create a new thread but rather continues the current thread. However,
an event handler may fork a separate pop-up thread after which the old thread resumes
as if the raised event finished and the pop-up thread continues the execution of the
event handler (see previous section).

The advantage of having a single thread abstraction spanning multiple protection
domains is that it ties the thread of control and Paramecium’s lightweight protection
domain mechanisms closely together. A single application no longer consists of one
process, but instead might span multiple processes in different protection domains to
provide internal protection. Migrating threads are the tool to intertwine these different
protection domains seamlessly. An extensive example of their use is the secure virtual
Java machine as discussed in Chapter 5.

With migrating threads it is important to be able to efficiently implement the
thread synchronization primitives, especially when the synchronization variables are
shared among different protection domains to synchronize access to shared memory
segments. These synchronization primitives are provided by the thread package and
operate on state local to the thread package implementation. For example, the imple-
mentation of a mutual exclusion lock (see Figure 4.7) consists of the mutex lock state
and a queue of threads currently blocked on the mutex. The lock implementation first
tests the lock status of the mutex. If it is set, the lock is in effect, otherwise there is no
contention for the lock. If the mutex is not locked, it is simply marked as locked and
the operation proceeds. Setting the lock state is an atomic operation implemented, in
this case, by an atomic exchange. When there is contention for the lock, that is the lock
state is already set, the current thread is removed from the run queue and put on the
waiting queue associated with the mutex. The scheduler is then called to activate a
new thread. All these operations must be atomic, since multiple threads may grab the
mutex concurrently. Hence, they are performed within a critical region.

SECTION 4.1 Unified Migrating Threads 93

LOCK(mutex):
while (atomic_exchange(1, &mutex.locked)) {

enter critical region
if (mutex.locked) {

remove current thread from the run queue
put blocked thread on lock queue
schedule a new thread

}
leave critical region

}

Figure 4.7. Mutual exclusion lock implementation.

The mutual exclusion lock implementation shown in Figure 4.7 requires access to
internal thread state information and is therefore most conveniently implemented as
part of the thread package. Unfortunately, when the thread package is implemented in
a different protection domain, say the kernel, each lock operation requires an expensive
cross protection domain call. This has a big performance impact on the application
using the thread system. In general, applications try to minimize the lock granularity to
increase concurrency.

Some systems (notably Amoeba) that provide kernel-level thread implementa-
tions improve the efficiency of lock operations by providing a shim that first executes a
test-and-set instruction on a local copy of the lock state and only when the lock is
already set the shim invokes the real lock system operation. In effect they wrap the
system call with an atomic exchange operation as is done with the thread queue
management in Figure 4.7. Assuming that there is hardly any contention on a mutex,
this reduces the number of calls to the actual lock implementation in the kernel. Of
course, this wrapper technique is only useful in environments without migrating
threads. With migrating threads the locks are shared among different protection
domains and therefore state local to a single protection domain would cause incon-
sistencies and incorrect locking behavior.

To support a similar wrapper technique for a migrating threads package we need
to share the lock state over multiple protection domains. Each lock operation would
first perform a test-and-set operation on the shared lock state before invoking the actual
lock operation in case there was contention for the mutex. Instead of introducing a new
shared lock state it is more efficient to expose the thread package’s internal lock state
(see Figure 4.8) and operate on that before calling the actual lock call. To guard against
mishaps, only the lock state is shared; the lock and run queues are still private to the
thread package. In fact this is exactly what Paramecium’s thread system does, only it
does it transparently to the application.

Consider the case where the thread package is shared among different protection
domains. The first instance of the thread package is instantiated in the kernel and its
interfaces are registered in all cooperating contexts. This instance will act as a kernel-

94 Operating System Extensions CHAPTER 4

......

domain 1

domain 2

domain 3

mutex.locked

4KB page

while (atomic_exchange(1, &mutex.locked))

while (atomic_exchange(1, &mutex.locked))

while (atomic_exchange(1, &mutex.locked))

....

....

....

Figure 4.8. Synchronization state sharing among multiple protection domains.

level thread package, performing thread scheduling and the synchronization operations.
Applications can use this thread package at the cost of additional overhead introduced
by the cross domain invocations to the kernel. However, when a separate thread pack-
age is instantiated in the application context it will search, using the object name space,
for an already existing thread package. If one exists, in this case the kernel version, it
negotiates to share the lock state and performs the atomic test-and-set operations
locally, exactly as described above. Only when the thread blocks will it call the kernel
thread package instance.

The user-level and kernel-level thread package negotiations occur through a
private interface. This interface contains methods that allow the user-level thread
package to pass ownership for a specific region of its address space to the kernel-level
thread package. The kernel-level thread package will use this region to map in the
shared lock state. The region itself is obtained by calling the range method from the
virtual memory interface (see Section 3.4.3) Once the lock state is shared, the user-
level thread package uses an atomic exchange to determine whether a call to the
kernel-level thread package is required.

In the current implementation the lock state is located on a separate memory
page. This leads to memory fragmentation but provides the proper protection from
accidentally overwriting memory. An alternate implementation, where multiple share
lock states are stored on the same page, leads to false sharing and potential protection
problems. We have not looked into hybrid solutions.

SECTION 4.1 Unified Migrating Threads 95

4.2. Network Protocols
Network connectivity is a central service of an operating system. It enables, for

example, remote file transfer, remote login, e-mail, distributed objects, etc. Among the
most popular network protocols is TCP/IP [Cerf and Kahn, 1974]. This protocol suite
is used to connect many different kinds of machines operating systems and form the
basis for the Internet. To enable network connectivity for Paramecium we have imple-
mented our own TCP/IP stack.

The key focus of our TCP/IP stack is to take advantage of Paramecium’s extensi-
bility features, use the pop-up threads instead of interrupts (see Section 4.1.3), and pro-
vide efficient cross protection domain data transfer mechanisms. In the next two sec-
tions we discuss our copy-less cross protection domain data transfer mechanism and
give an overview of our TCP/IP stack.

4.2.1. Cross Domain Shared Buffers
Traditional microkernel and server based operating systems suffer from two

common performance bottlenecks. The first one is the IPC overhead, which becomes a
concern when many IPCs are made to different servers. The second problem is the
transport of data buffers between servers. In this section we focus on that problem.
That is, how can we efficiently share data buffers among multiple cooperating protec-
tion domains. Our system is akin to Druschel’s work on Fbufs [Druschel and Peterson,
1993] and Pai’s work on IO-Lite [Pai et al., 2000], with the difference that it is not
hardwired into the kernel and allows mutable buffers. Our efficient transport mechan-
ism is another example of Paramecium’s support for the lightweight protection domain
model.

The problem with multiserver systems, that is a system with multiple servers run-
ning on a single computer, is that each server keeps its own separate pool of buffers.
These are well isolated from other servers, so that explicit data copies are required to
transfer data from one protection domain to another. As Pai [Pai et al., 2000] noted,
this raises the following problems:

� Redundant data copying . Data may be copied a number of times when it
traverses from one protection domain to another. Depending on the data size,
this may incur a large overhead.

� Multiple buffering . The lack of integration causes data to be stored in multi-
ple places. A typical example of this is a web page which is stored in the file
system buffer cache and the network protocol buffers. Integrating the buffer
systems could lead to storing only a single copy of the web page obviating the
need for memory copies. This issue is less of a concern to us since we pri-
marily use our buffer scheme to support our TCP/IP stack.

� Lack of cross-subsystem optimization . Separate buffering mechanisms make
it difficult for individual servers to recognize opportunities for optimizations.
For example, a network protocol stack could cache checksums over data

96 Operating System Extensions CHAPTER 4

buffers if only it were able to efficiently recognize that a particular buffer was
already checksummed.

Pool 1

Application

Pool 2

Network Driver

TCP/IP stack

Figure 4.9. Cross domain shared buffers where buffer pool 1 is shared

between the network driver and the TCP/IP module, and buffer pool 2 is

shared between the TCP/IP module and the user application. Only the TCP/IP

module has access to both pools.

To overcome these problems we have designed a shared buffer system whose
primary goal is to provide an efficient copy-less data transfer mechanism among multi-
ple cooperating protection domains. In our system, the shared buffers are mapped into
each cooperating protection domain’s virtual memory address space to allow efficient
access. The shared buffers are mutable and, to amortize the cost of creating and map-
ping a shared buffer, the buffers are grouped into pools which form the sharing granu-
larity. Every buffer pool has an access control list associated with it to control which
domains have access to which buffers (see Figure 4.9). Our shared buffer mechanism
is implemented as separate module and can be colocated with an application.

In order for a protection domain to use the shared buffer system it first has to
register itself. By doing so, the protection domain relinquishes control over a small
part of its 4 GB virtual memory address space, typically 16 MB, and passes it on to the
shared buffer system. The buffer system will use this virtual memory range to map in

SECTION 4.2 Network Protocols 97

the shared buffer pools. The buffer pools are only mapped into contexts that are
authorized to have access to it. The buffer system guarantees that each shared pool is
allocated on the same relative position in the virtual memory range of each participat-
ing protection domain. Hence, passing a shared buffer reference from one protection
domain to another consists of passing an integer offset to the shared buffer in this vir-
tual memory range instead of passing a pointer. To obtain a pointer to the shared
buffer it suffices to add the base address of the virtual memory range which the buffer
system uses to map in buffer pools.

To illustrate the use of the shared buffer system consider the following example
where the network driver module allocates a shared buffer pool for incoming network
packets and passes them on to the TCP/IP module. The interface to the shared buffer
module is shown in Figure 4.10. In order for both the network driver module and the
TCP/IP module to use the shared buffer system, they first have to register using the
register method. This has as its argument a virtual memory range identifier that is
obtained using the range method (see Section 3.4.3) and represents the part of the vir-
tual address space that will be managed by the shared buffer system. The return value
of the registration is the base address for all future shared buffers.

� ���

Method Description� �� ���

base_address = register(virtual_range_id) Register with the buffer system
� ���

unregister() Remove all associations
� ���

offset = create(nelem, elsize, elalign) Create a buffer pool
� ���

destroy(offset) Destroy a buffer pool
� ���

bind(offset) Request access to a buffer pool
� ���

unbind(offset) Release access from a buffer pool
� ���

add_access(offset, context_id) Add context_id to the buffer pool access list
� ���

remove_access(offset, context_id) Remove context_id from the access list
� ���

attribute(offset, flags) Set buffer pool attributes
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 4.10. Shared buffer interface.

The next step is for the network driver to create a buffer pool for incoming mes-
sages,, using the create method. Usually, a small pool of buffers, say 128 buffers each
1514 bytes long, suffices for a standard Ethernet device driver. The buffer system will
allocate a page-aligned buffer pool, map it into the virtual memory space of the device

98 Operating System Extensions CHAPTER 4

driver†, and return the offset to the buffer pool as a result. To access the actual buffer
pool the network driver module has to add this offset to the base address it got when it
registered. For the TCP/IP module to gain access to the shared buffer pool, the device
driver module, which is the owner of the pool, has to add the module’s context to the
access control list using the add_access method. The TCP/IP module can then get
access to the pool using the bind method. This method will, provided that the TCP/IP
module is on the access control list, map the buffer pool into the TCP/IP module’s
address space. From then on passing buffers from this buffer pool between the network
driver and the TCP/IP module only consists of passing offsets. No further binding or
copying is required. For symmetry, each interface method described above has a com-
plement method. These are unregister to remove access from the shared buffer system,
destroy to destroy a shared buffer pool, unbind to release a shared buffer pool, and
remove_access to remove a domain from the access control list. The attribute method
associates certain attributes with a buffer pool. Currently only two attributes exist: The
ability to map an entire pool into I/O space and to selectively disable caching for a
buffer pool. Both attributes provide support for devices to directly access the buffer
pools.

As identified above, the three main problems with nonunified buffer scheme’s
are: redundant data copying, multiple buffering, and lack of cross-subsystem optimiza-
tion. Our system solves these problems by providing a single shared buffer scheme to
which multiple protection domains have simultaneous access. Although the current
example shows the network protocol stack making use of this scheme, it could also be
used, for example, by a file system or a web server to reduce the amount of multiple
buffering. Cross-subsystem optimizations, such as data cache optimizations, would be
possible too. The example given by Pai [Pai et al., 2000] to cache checksums is harder
since the buffers in our scheme are mutable. Extending our buffer scheme with an
option to mark buffers immutable is straightforward.

Our work is similar to Druschel’s work on Fbufs and Pai’s work on IO-Lite. In
their work, however, the buffers are immutable and they use aggregates (a kind of
scatter-gather list) to pass buffers from one domain to another. When passing an aggre-
gate the kernel will map the buffers into the receiving address space, mark them read-
only, and update the addresses in the aggregate list accordingly. In our scheme we use
register and bind operations to gain access to the shared buffer pools instead of adding
additional overhead to the cross domain IPC path. To amortize the cost of binding we
share buffer pools rather than individual buffers as done in IO-Lite. This has a slight
disadvantage that the protection guarantees in our system are of a coarser granularity
than those in IO-Lite. Namely, we provide protection among buffer pools rather than
individual buffers.

� ���������������������������

†The network device on our experimentation hardware can only access a limited portion, namely 16 MB,
of the total 4 GB address space.

SECTION 4.2 Network Protocols 99

4.2.2. TCP/IP Protocol Stack
TCP/IP [Cerf and Kahn, 1974] is the popular name for a protocol stack that is

used to connect different computers over unreliable communication networks. The
name is derived from the two most important protocols among a suite of many different
protocols. The IP [Postel, 1981a] protocol provides an unreliable datagram service,
while TCP [Postel, 1981b] provides a reliable stream service on top of IP. The TCP/IP
protocol suite forms the foundation of the Internet, a globe-spanning computer net-
work, and is extensively described by Tanenbaum [Tanenbaum, 1988], Stevens
[Stevens, 1994], Comer [Comer and Stevens, 1994], and many others. A typical use of
a TCP/IP protocol stack is depicted in Figure 4.11. This example shows two hosts
communicating over a network, Ethernet [Shock et al., 1982], and using the TCP/IP
stack to send a HTTP [Berners-Lee et al., 1996] command from the browser to the
WEB server.

Host A Host B

IP

TCP UDP

ARPICMP

network interface network interface

ARPICMPIP

UDPTCP

Ethernet network

WEB browser WEB server

GET / HTTP 1.0

Figure 4.11. Example of a computer network with two TCP/IP hosts.

Rather than designing a TCP/IP protocol stack from scratch we based the
Paramecium implementation on the Xinu TCP/IP stack [Comer and Stevens, 1994],
with additions from the BSD NET2 stack [McKusick et al., 1996], and heavily modi-
fied it. Our main modifications consisted of making the stack multithreaded, use pop-
up threads to handle network interrupts, and use our shared buffer mechanism to pass
data between modules. The TCP/IP protocol stack is implemented as a single module
and depends on the availability of a network driver. Currently we have implemented
an Ethernet driver module.

Since our protocol stack is implemented as a number of different components
(network driver, TCP/IP stack, and shared buffers), various different configurations are
possible. The configurations offer trade-offs between robustness and performance. For
very robust systems strong isolation is an absolute necessity. Therefore, at the cost of

100 Operating System Extensions CHAPTER 4

extra IPC overhead, each component can be placed in its own separate protection
domain and the amount of sharing can be minimized. That is, only a limited set of
interfaces and buffer pools are shared. On the other hand, performance could improved
by colocating the components in the application’s protection domain, thereby reducing
the number of IPCs. The advantage of having the TCP/IP stack as a separate module is
that it is more amenable to modification. One modification could be a tight integration
of the TCP stack and a web server as in Kaashoek [Kaashoek et al., 1997] where the
web pages are preprocessed and laid out as TCP data streams that only require a check-
sum update before being transmitted. Another reason for user-level protocol process-
ing is the performance improvement over a server based implementation [Maeda and
Bershad, 1993].

The key modification to the Xinu TCP/IP stack was to turn it into a mul-
tithreaded stack. This mainly consisted of carefully synchronizing access to shared
resources, such as the transmission control blocks holding the TCP state. The network
driver uses the pop-up thread mechanism to handle network interrupts. These threads
will follow the incoming message up the protocol stack until it is handed off to a dif-
ferent thread, usually the application thread reading from a TCP stream. Once the data
is handed off, the thread is destroyed. This prevents the thread from having to traverse
down the call chain where it will eventually still be destroyed by the network driver’s
interrupt handler. This mechanism, the shepherding of incoming messages, is similar
to the technique used by the X-kernel [Hutchinson et al., 1989]. The addition of shared
buffer support was straight forward since shared buffers are, after initialization, trans-
parent with the existing local buffers.

4.3. Active Filters
In Chapter 3 we looked at extending the operating system kernel securely and

used a mechanism based on digital signatures. In this section we look at a different and
more restrictive way of extending a system: active filters. Active filters are an efficient
event demultiplexing technique that uses application supplied predicate filters to deter-
mine the recipient of an event. The general idea is that an event producer, say a net-
work device driver, uses the predicate filters to determine which process out of a group
of server processes will receive the incoming network packet. This filter based demul-
tiplexing mechanism can be used, for example, to balance the load among a group of
web servers on the same machine. Whenever a web server is started, it first registers a
predicate filter with the network device driver specifying under what load, number of
requests currently being processed by that server, it is willing to accept new requests.
The network device driver then uses this information to demultiplex the incoming net-
work packets.

The example above points at one of main characteristics of active filters: the
ability to share state with the user application that provided the filter, in this case the
current load of the web server process. The other characteristic of active filters is that
they are not confined to the local host but can of offloaded into intelligent I/O adapters

SECTION 4.3 Active Filters 101

which will do the demultiplexing and decide whether it is necessary to even interrupt
the host. This requires filter specifications to be portable since the intelligent I/O
adapters is likely to have a different processor than the host. Hence, our solution for
extending the operating system by using code signing, as described in Chapter 3, does
not work in this case since it does not provide the required portability, nor does it pro-
vide the flexibility and efficiency for relatively small and frequently changing filter
expressions.

Active filters are an efficient event demultiplexing technique that uses simple
predicate filters to determine the recipient of an event. The goal of this mechanism is
to provide a generic event dispatching service that can be used throughout the system
from demultiplexing requests to multiple servers for load balancing, to shared network
event demultiplexing in the kernel, to implementing subject based addressing on intelli-
gent I/O devices. The filters are called active because, unlike other systems, they may
have side effects when they are evaluated.

Active filters find their origin in some of our early ideas on using intelligent net-
work I/O devices to reduce the number of interrupts to the host processor by providing
some additional filtering and limited processing capabilities. An example of this is a
shared object implementation using a total ordered group communication protocol.
Once a message has been delivered successfully to the host processor, retransmission
attempts for that message can be safely ignored and host does not have to be inter-
rupted again. In fact, for simple operations, like a simple shared integer object, the
update could be handled entirely by the intelligent I/O device. Of course, this simple
example leaves out many implementation details, but it does highlight the original
ideas behind the filter scheme: user provided filter expressions and read/write access to
message and user data.

A demultiplexing service that uses generic user filters with access to user and
local memory raises the following issues:

� Portable filter descriptions. The filter specifications needs to be portable
across multiple platforms and devices because a filter may be executing on a
intelligent network device or on the host.

� Security. Since a filter expression is generic code which runs in another pro-
tection domain and is potentially hostile or buggy with respect to other filters,
it needs to be strictly confined and controlled.

� Efficient filter evaluation. Since there may be many filters it is important to
reduce event dispatching latency by having an efficient filter evaluation
scheme.

� Synchronizing local and user state accesses. Since filters are allowed to
access and modify local and user state, their accesses need to be synchronized
with other concurrent threads in the system.

102 Operating System Extensions CHAPTER 4

In our system we have addressed each of these issues as follows: For portability
we use a small virtual machine to define filter expressions and for efficiency these
filters are either interpreted or compiled on-the-fly (during execution) or just-in-time
(before execution). This virtual machine also enforces certain security requirements by
inserting additional run-time checks. We enable efficient filter evaluation by dividing
a filter into two parts. The first part, the condition , does not have any side effects and
is used to determine which event to dispatch and which filter is to be executed. The
second part, the action , provides a code sequence that is executed when its condition
matches. The action part may have side effects. The condition part is organized in
such a way that it allows a tree based evaluation to find the matching condition effi-
ciently. Synchronizing access to local state is straightforward and the virtual machine
will enforce this. To synchronize access to user state, the virtual machine contains lock
instructions which map onto our thread package’s shared lock mechanism.

In our system, active filters are implemented by a separate module that is used to
demultiplex incoming events. Other systems, which are the source for events such as a
network adapters, can implement this active filter mechanism directly. An example of
an application for our system is shown in Figure 4.12. In this picture an incoming event
is matched with the filters in the filter table and if one of the conditions matches the
corresponding action is executed. The filter expressions in this example are denoted as
pseudo expressions where the condition is the left hand side, followed by an arrow as
separator, and the action is on the right hand side. The actual implementation is dis-
cussed in the next section.

In this example we have three different servers (A, B, and C) over which we bal-
ance the work load. We use a simple partitioning scheme where each server is given a
proportional share of the work. Which server will get the request is determined by
evaluating the filter conditions. For server A the condition is U A [workload] ≤
U A [total] /3, meaning that its work load should be less than or equal to one third of the
total work load of all servers in order for it to become true. In this pseudo expression,
U A [workload] is a memory reference to offset workload in the virtual memory range
shared with server A (i.e., server’s A private data). Similarly, U A [total] /3 refers to the
proportional share of all requests in progress by the servers.† When an event is
dispatched to the filter module it evaluates the filter conditions to determine which
filter expression applies and then executes the corresponding filter action. Unlike the
condition, an action is allowed to make changes to the user and local state. In our
example, the action consists of U A [workload]++; U A [total]++; dispatch" meaning that

� ���������������������������

†The filter expressions are limited to accessing local data and small portion of the address space of the
user that installed the filter. In order for it to access global state, such as the total variable in this exam-
ple which is shared over multiple servers, we use an aliasing technique. That is, all servers share a com-
mon physical page and agree on the offset used within that page. This page is then mapped into each
server’s protection domain. Each server makes sure that the filter module can access this aliased page.
This is further discussed in Section 4.3.2.

SECTION 4.3 Active Filters 103

it updates the per server work load, the total request count, and dispatches the associ-
ated event. As soon as the request has been processed, the server will decrease these
variables to indicate that the work has been completed.

Filter Module

U C [workload] ≤ U C [total] /3 →
U C [workload]++; U C [total]++; raise

U B [workload] ≤ U B [total] /3 →
U B [workload]++; U B [total]++; raise

U A [workload] ≤ U A [total] /3 →
U A [workload]++; U A [total]++; raise

Filter table

U A [workload] = 2

U A [total] = 8

Server A

U B [workload] = 3

U B [total] = 8

Server B

U C [workload] = 3

U C [total] = 8

Server Cfilter

match

event

data

user

data

event

Figure 4.12. Example of a load balancing filter.

It is interesting to note that the set of problems listed for active filters is similar
to those of kernel extensions in Chapter 3. There we chose to use a different approach:
signed binaries. The reason for this was that we wanted to keep the kernel small and
only include those services required for the base integrity of the system. In addition,
portability across multiple devices is not a major concern for kernel extensions. Still,
with filters we explore a different kind of extension mechanism, one that is similar to
application specific handlers in the ExOS kernel [Engler et al., 1994].

In the next section we will discuss the design of the filter virtual machine and
how to implement it efficiently. The section after that contains a number of sample
applications for our filter mechanism.

104 Operating System Extensions CHAPTER 4

4.3.1. Filter Virtual Machine
An active filter expression consists of two parts, a condition part which cannot

have side effects and an action part which is essentially unrestricted filter code. In
addition to these two expressions, our event dispatching service also associates a virtual
memory range with a filter. This range corresponds to a virtual memory region in the
user’s address space to which the filter has access. This allows the filter to manipulate
selected user data structures when the filter module is located in a different protection
domain.

As pointed out in the previous section, portability, security, efficient evaluation
and synchronization are key issues for active filters. Rather than denoting the filter
expressions in pseudo-code as in the previous section, we express them as virtual
machine instructions which are interpreted or compiled by the filter module. This
approach is similar to the Java virtual machine (JVM) approach with the difference that
the virtual machine is a RISC type machine which is based on Engler’s VCODE
[Engler, 1996], a very fast dynamic code generation system. This system is portable
over different platforms and secure in the sense that the virtual machine enforces
memory and control safety (see Section 3.3). Efficiency is achieved by using run-time
compilation and optimization techniques to turn the virtual machine code into native
code. Because the RISC type virtual machine is a natural match with the underlying
hardware. code generation can be done faster and more efficiently than for stack based
virtual machine such as Java bytecodes. To provide synchronization support we have
extended the virtual machine to include synchronization primitives.

To implement filters more efficiently we have separated filter expressions into a
condition and an action part and placed certain restrictions on conditions. This separa-
tion corresponds to the natural structure of first determining whether a filter applies
before executing it. The restrictions placed on the condition part are: the expression
should be referentially transparent (i.e., should not have side effects), and have a
sequential execution control flow (i.e., no back jumps), These two restrictions allow the
condition expression to be represented as a simple evaluation tree [Aho et al., 1986].
Using this tree, we can construct a single evaluation tree for all filter conditions and
apply optimization techniques such as common subexpression elimination to simplify
the tree. To detect whether a condition has been evaluated we add marker nodes,
denoting which condition matched, and bias the tree such that the first filter is the first
to match (for simplicity we assume that only one filter can match, this restriction can
be lifted by continuing the evaluation after a match). This evaluation tree can either be
interpreted or, using dynamic run-time compilation techniques, be compiled into native
code. In the latter case the evaluation tree is compiled each time a new filter condition
is added rather than at first use-time as is the case with just-in-time compilers. As soon
as a marker is reached the associated action expression is executed. Using an condition
evaluation tree is especially advantageous when a large number of filters are used since
a tree based search reduces the search time from O (n) to O (log n). The action expres-
sion, unlike the condition expression, does not have any restrictions placed on it.

SECTION 4.3 Active Filters 105

The condition and action part of an active filter consist of a sequence of filter vir-
tual machine instructions which are summarized on Figure 4.13. The filter virtual
machine is modeled after a load-store RISC machine and the instruction set is inten-
tionally kept simple to allow efficient run-time code generation. The registers of the
filter virtual machine are 64-bits wide and the instructions can operate on different
integer data types. These are quad, word, half word, and byte, and correspond to 64,
32, 16, and 8 bit quantities, respectively. The instructions themselves are divided into
multiple groups as follows:

� Binary operations. These are the traditional binary operations such as addi-
tion, subtraction, bitwise exclusive or, and bit shift operations. The format of
these instruction is a three tuple opcode: two operand registers and a result
register.

� Unary operations. These are the traditional unary operations such as bitwise
complement, register move, and type conversion. The format of these instruc-
tions is a two tuple opcode: the source and destination registers.

� Memory operations. These are the only operations that can load and store
values to memory, and they are separated into two groups. The load and store
user (ldu/stu) operations operate on the virtual memory range that was given
by the user who also provided the filter expression. This allows filter expres-
sions to manipulate user data structures during filter evaluation. The load and
store local (ldl/stl) operations operate on the arguments associated with the
event that caused the filter evaluation. These arguments contain, for example,
the data of a network packet. The format of the load memory instructions is a
three tuple opcode where the first operand is the source register, the second
operand is the an offset, and the third operand is the result register.

� Control of transfer operations. The control transfer operations are subdivided
into two groups: conditional and unconditional control transfers. The former
group evaluates a condition (e.g., less than, less or equal than, or greater than)
and if the condition holds, control is transfered to the target address. The
latter group transfers control unconditionally. This group also includes a link
and return instruction which acts as procedure call and return. The format for
conditional control transfer instructions is a three tuple opcode. The first two
operand are the left and right hand side of the condition and the third operand
is the target address. The jmp instruction’s format is a single tuple opcode, its
single operand is the target address. The lnk instruction is similar to jump
except that it leaves the address of the next instruction after the link in the first
operand register.

� Procedure operations. These operations assist the virtual machine in allocat-
ing the persistent and temporary register storage requirements for each pro-

106 Operating System Extensions CHAPTER 4

� ���

Instruction Operands Type Comments� �� ���

add rs1,rs2,rd q,w,h,b Addition

sub rs1,rs2,rd q,w,h,b Subtraction

mul/imul rs1,rs2,rd q,w,h,b Multiply

div/idiv rs1,rs2,rd q,w,h,b Divide

mod rs1,rs2,rd q,w,h,b Modulus

and rs1,rs2,rd q,w,h,b Bitwise and

or rs1,rs2,rd q,w,h,b Bitwise or

xor rs1,rs2,rd q,w,h,b Bitwise xor

shl rs1,rs2,rd q,w,h,b Shift left

shr rs1,rs2,rd q,w,h,b Shift right
� ���

com rs,rd q,w,h,b Bitwise complement

not rs,rd q,w,h,b Bitwise not

mov rs,rd q,w,h,b Register move

neg rs,rd q,w,h,b Negate

cst rs,rd q,w,h,b Load a constant

cvb rs,rd b Convert byte

cvh rs,rd h Convert half word

cvw rs,rd w Convert word
� ���

ldu rs,offset,rd q,w,h,b Load from user

stu rs,rd,offset q,w,h,b Store to user

ldl rs,offset,rd q,w,h,b Load from local

stl rs,rd,offset q,w,h,b Store to local
� ���

blt rs1,rs2,addr w,h,b Branch if less then

ble rs1,rs2,addr w,h,b Branch if less then or equal

bge rs1,rs2,addr w,h,b Branch if greater then or equal

beq rs1,rs2,addr w,h,b Branch if equal

bne rs1,rs2,addr w,h,b Branch if not equal
� ���

jmp addr Jump direct or indirect to location

lnk rd, addr w Link and jump direct or indirect to location
� ���

enter npr,ntr Function prologue

leave Function epilogue
� ���

raise rs q Raise an event

lck rs q Lock mutex

unlck rs q Unlock mutex
� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 4.13. Summary of the active filter virtual machine instructions. The

types q, w, h, b correspond to unsigned 64, 32, 16, and 8 bit quantities, respec-

tively, and rs and rd denote source and destination registers.

SECTION 4.3 Active Filters 107

cedure. The enter instruction allocates the storage space, with the number of
persistent and temporary registers as parameters, and leave will release it.

� Extension operations. The last group of instructions provides support for
Paramecium specific operations. These include raising an event and acquiring
and releasing locks. Raising an event can be used to propagate an event by a
filter, as in the load balancing example in the previous section, and the syn-
chronization primitives are used to prevent race conditions when accessing
shared resources. The format of these instructions is a single tuple opcode.
The operand contains the resource identifier for the event or lock variable.

The virtual machine has been designed to allow fast run-time code generation.
As a result the instructions closely match those found on modern architectures. The
run-time code generation process consists of two steps: the first is register allocation
and the second is the generation of native instructions. The latter uses a straightfor-
ward template matching technique [Massalin, 1992], while the former is much harder
as it consists of mapping the virtual machine registers onto the native registers. To
accommodate fast register allocation we have divided the register set into two groups:
those persistent across function calls and temporary registers. As suggested by Engler
[Engler, 1996] the register allocator uses this order to prioritize the allocation. First it
maps persistent registers and then the temporary registers to the native registers. This
technique works quite well in practice, since modern RISC architectures tend to have
many registers.

The filter virtual machine has a relatively traditional architecture with some
exceptions. Unlike other filter systems, our system allows access to user data during
the evaluation of a filter. This enables a number of applications which are discussed in
the next section. It also raises synchronization issues since multiple threads may access
the data concurrently. For this reason we augmented the virtual machine and added
synchronization primitives to the basic instruction set that directly map onto our thread
package’s synchronization primitives. The shared synchronization state mechanism
provided by our thread package ensures an efficient lock implementation. We pur-
posely separated user memory accesses and synchronization to allow for flexible lock-
ing policies.

Another addition to the virtual machine is the ability to raise events. This is used
by the action expression of a filter to propagate the event that caused the filter evalua-
tion and is the foundation of our event dispatching mechanism. Embedding the event
invocation in the action expression provides additional flexibility in that it is up to the
action expression to determine when to raise the event. For example, a network proto-
col stack could implement an action expression on an intelligent I/O processor that han-
dles the normal case. Exceptional cases, such as error handling or out of order process-
ing, could be handled by the host processor which would be signaled by an event raised
on the I/O processor.

108 Operating System Extensions CHAPTER 4

4.3.2. Example Applications
Active filters provide a way to safely migrate computations to a different protec-

tion domain, including the kernel, and into intelligent I/O devices. The main purpose
of active filters is to demultiplex events, but they can also be used to perform auto-
nomous computations without dispatching the event. To illustrate the versatility of
active filters we describe three different applications that take advantage of them. The
first application elaborates on the load balancing example in Section 4.3. The next
example shows how to build a distributed shared memory system using active filters.
In the last example we discuss the use of active filters in intelligent I/O devices and dis-
cuss some of its design challenges.

Server Load Balancing
The server load balancing example from Section 4.3 is an example where active

filters are used to select a recipient of an event based on the workload of a server. A
typical application of this service would be web server load balancing, where the active
filter module is part of the network protocol stack and the web servers reside in dif-
ferent protection domains. In this section we will illustrate the example further by dis-
cussing some of the missing details.

In order for the web server to receive events it has to register an active filter with
the demultiplexing module in the network protocol stack. These filters are described in
terms of the filter virtual machine and the condition expression for our load balancing
example is shown in Figure 4.14. This condition evaluates to true (1) when the condi-
tion matches, else it evaluates to false (0). In this example, the condition expression
only operates on temporary registers and accesses the user variables workload and total.
These are the variables shared between the server and the filter expressions. By con-
vention the result of a condition is returned in temporary register zero.

enter 0,3 / start procedure
ldu 0,workload,t1 / t1 := U A [workload]
ldu 0,total,t2 / t2 := U A [total]
div t2,3,t2 / t2 := U A [total] /3
cst 1,t0 / t0 := true
ble t1,t2,lesseq / U A [workload] ≤ U A [total] /3
cst 0,t0 / t0 := false

lesseq:
leave / end procedure

Figure 4.14. Filter virtual machine instructions for the U A [workload] ≤
U A [total] /3 condition.

A problem that arises in this condition is that filter expressions can only access a
portion of the web server’s address space. That is, the virtual memory range the web
server passed on to the active filter module when registering the filter. Other memory
is off limits including virtual memory ranges used by other active filters. To overcome

SECTION 4.3 Active Filters 109

this limitation we use page aliasing for sharing the global variable total. While work-

load is private to each server, the total variable is shared among several servers and
represents the total number of jobs in progress. Before registering the active filters, the
servers agree on a single shared page to hold this total variable and each server makes it
available in the virtual memory range associated with the active filter. That is, the
memory range which the filter module, and consequently the filter, can access.

The condition expression operates on shared variables and is vulnerable to race
conditions caused by concurrent accesses to the variables. In this case, however, these
are harmless and cause at most a transient unbalanced load. For the action expression
shown in Figure 4.15, proper locking is crucial since it modifies the shared variables.
For this the action expression acquires a mutex before updating the shared variables. It
releases the mutex before raising the event to propagate the event invocation to the
server. It is up to the server to properly decrease these values when it has processed the
request.

enter 0,1 / start procedure
lck mutex / acquire shared mutex
ldu 0,workload,t0 / t0 := U A [workload]
add t0,1,t0 / t0 := t0 + 1
stu t0,0,workload / U A [workload] := t0
ldu 0,total,t0 / t0 := U A [total]
add t0,1,t0 / t0 := t0 + 1
stu t0,0,total / U A [total] := t0
unlck mutex / release shared mutex
raise event / demultiplex event
leave / end procedure

Figure 4.15. Filter virtual machine instructions for the U B [workload]++;

U B [total]++; raise action.

Distributed Shared Memory
Another example of the use of active filters is their application in parallel pro-

grams that run on a collection of loosely coupled machines, such as a collection of
workstations (COW). These parallel programs are usually limited by the communica-
tion latency between different machines and would benefit from latency reduction.
One way of reducing the latency is to migrate part of the computation into the device
driver’s address space where it could inspect and process each incoming packet before
passing it to the application. In fact, latency can be even further reduced by moving
part of the computation, the processing of simple packets, into an intelligent I/O device
which avoids interrupting the kernel entirely.

Typical candidates that might benefit from this approach are the traditional
branch-and-bound algorithms [Bal, 1989] that solve problems such as the traveling
salesman problem (TSP). A TSP solving program could use message passing to broad-

110 Operating System Extensions CHAPTER 4

cast its current bound to the group of cooperating processors. These processors could
use the active filters to determine whether the message was intended for them and take
the bound from the network message and assign it to the bound variable shared with the
user process running the application. The TSP solving application would periodically
examine the current bound and adjust its search accordingly. By moving this func-
tionality into an intelligent network I/O adapter we can avoid interrupting the main pro-
cessor all together, but this raises a number of issues that are discussed in the next
example.

Predicate Addressing
Our last example is a predicate addressing scheme where incoming network

packets are selected based on predicates rather than fixed addresses such as a hardware
MAC address. In such a system the user typically supplies a predicate filter which is
installed and implemented on an intelligent I/O device. These predicates can be used,
for example, to implement cache consistency by having the user register predicates that
match the objects in its cache. Just as with snooping cache protocols [Handy, 1993],
when the user sees an update for a cached object the update will invalidate the user’s
copy†. Not surprisingly, active filters model this concept of predicate addresses quite
naturally since it was one of the original ideas behind active filters. In this subsection
we will discuss the implications of migrating active filter computations to an intelligent
I/O device and use predicate addressing as the example.

The main goal of predicate addresses is to reduce the workload for the host pro-
cessor by providing finer grained control over the accepted packets that interrupt the
host processor. These interruptions can be further reduced by migrating part of the user
computation into an intelligent I/O device. A typical intelligent network I/O adapter
consists of a network interface, a bus interface, a general purpose CPU, memory, and
possibly additional hardware support for encryption, check summing, and memory
management. The issues involved in implementing active filters on an intelligent I/O
device are similar to the generic active filter issues. These are: portability, security,
efficiency, and synchronized access to local and user state. The solutions are also simi-
lar, except for security and synchronized access to user state, which have to be handled
differently.

The security issues are different in that an intelligent I/O device can typically
perform bus master I/O. That is, it can read and modify any physical memory location
in main memory without assistance or approval from either the main processor of the
MMU. Consequently, any program running on them can read and modify any memory
location. To prevent this we can either resort to sandboxing every virtual machine
instruction that accesses main memory or employ a proper MMU on the I/O bus. As in
described in Section 3.3, sandboxing has a nonnegligible performance impact for gen-
� ���������������������������

†Predicate addressing assumes that the physical interconnect is a broadcast medium such as Ethernet or
token ring network. Efficiently implementing predicate addressing on nonbroadcast networks, such as
ATM and gigabit Ethernet, can be done by routing messages based predicate unions.

SECTION 4.3 Active Filters 111

eric processors, but in this case it might be a viable solution. Our virtual machine is
sufficiently simple and bus master transfers for small sizes, such as a 4-byte integer, are
sufficiently expensive that the sandboxing overhead might be insignificant. The other
solution is to add a separate MMU on the I/O bus as described in 3.4.6.

Synchronization between the intelligent I/O device and the main processor
should occur either through hardware semaphores when they are available or by imple-
menting, for example, Dekker’s Algorithm [Ben−Ari, 1990]. This choice depends on
the atomicity properties of the device and host processor memory accesses.

The advantage of using a filter virtual machine is that the filter expressions can
also be implement on different hardware devices. For example, the intelligent I/O dev-
ice could be equipped with field programmable gate arrays (FPGA). Assuming that
filter condition expressions do not change often, we can compile them into a netlist and
program the FPGA to perform parallel filter matching. A different approach would be
to use special purpose processors that are optimized to handle tree searches (pico pro-
cessors).

4.4. Discussion and Comparison
Threads have a long history. The notion of a thread as a flow of control dates

back to the Berkeley time-sharing system [Lampson et al., 1966] from 1966. Back then
they were called processes. These processes interacted through shared variables and
semaphores [Dijkstra, 1968a]. The programming language PL/1, also dated back to
1965, contained a CALL start (A, B) TASK construction which would call the function
start as a separate task under OS/360 MVT. Reportedly, a user-level thread package
for Multics was written around 1970 but never properly documented. It used multiple
stacks in a single heavyweight process. With the advent of UNIX in the early 1970s,
the notion of multiple threads per address space disappeared until the appearance of the
first microkernels in the late 1970s and early 1980s (V [Cheriton, 1988], Amoeba
[Tanenbaum et al., 1991], Chorus [Rozier et al., 1988], Accent [Fitzgerald and Rashid,
1986], and Mach [Accetta et al., 1986]). Nowadays, multiple threads per address space
are found in most modern operating systems (Solaris [Vahalla, 1996], QNX [Hilde-
brand, 1992], and Windows NT [Custer, 1993]).

Active messages date back to Spector’s remote operations [Spector, 1982].
These operations would either fetch or set remote memory by sending the remote host
simple memory operations. Von Eicken extended this concept by replacing the func-
tion descriptor with the address of a remote function. Upon receipt of this active mes-
sage the recipient would, directly from the interrupt handler, execute the designated
remote function [Von Eicken et al., 1992]. This approach takes the model of the net-
work as an extension of the machine’s internal data bus and achieved very low latency
communication at the expense of the security of the system.

The traditional active message mechanism has a number of serious drawbacks
associated with it in the form of security and synchronization. Some of these were
solved in our implementation for Amoeba [Van Doorn and Tanenbaum, 1994] but it

112 Operating System Extensions CHAPTER 4

still restricted the handler in that it could only synchronize on a single shared lock.
Wallach et al. devised a technique called optimistic active messages (OAM) [Wallach
et al., 1995] which enabled the handler to consist of general purpose code while still
performing as well as the original active message implementation. They delayed the
creation of the actual thread until the handler was either blocked or took too long to
execute.

Thread migration and synchronization state sharing are the techniques used to
support Paramecium’s lightweight protection model where an application is subdivided
into multiple protection domains. Thread migration is an obvious communication
mechanism to transfer control between two closely intertwined protection domains and
it can be implemented efficiently with some minimal operating system support. Thread
migration is also used by Ford et al. to optimize IPCs between two protection domains
[Ford and Lepreau, 1994]. Other systems that included migrating threads are Clouds
[Dasgupta and Ananthanarayanan, 1991] and Spring [Mitchell et al., 1994]. Some
authors, especially those working on loosely coupled parallel systems, use the term
thread migration to refer to RPC-like systems where a thread logically migrates from
one processor to another [Dimitrov and Rego, 1998; Mascaranhas and Rego, 1996; Thi-
tikamol and Keleher, 1999]. This is different from our system where the thread
migrates into a different protection domain while remaining a single schedulable entity.

Synchronization state sharing is a novel aspect of our thread system that finds its
roots in a commonly used optimization technique for kernel-level thread systems.
Rather than calling the kernel each time a mutex is grabbed, a local copy is tried first
and the kernel is only called when there is contention for the lock. One system that has
implemented this optimization is Amoeba [Tanenbaum et al., 1991]. In our system we
have extended this mechanism to make it an integral part of the thread system and
enabled multiple address spaces to share the same lock efficiently. The latter is impor-
tant since threads can migrate from one protection domain to another and multiple pro-
tection domains can work on the same shared data. Our synchronization state sharing
technique could be used to optimize Unix inter-process locking and shared memory
mechanisms [IEEE, 1996].

TCP/IP [Stevens, 1994] has a long history too that dates back to a DARPA pro-
ject in the late 1960’s and nowadays forms the foundation for the Internet. Our TCP/IP
network protocol stack was implemented to provide network connectivity for Parame-
cium and to demonstrate the use of pop-up threads and the versatility of our extensible
operating system by implementing an efficient cross-domain data sharing mechanism.
Our shared buffer scheme is in many respects similar to Pai’s work on IO-Lite [Pai et
al., 2000]. This is not surprising since both are inspired by earlier work from Druschel
on cross-domain data transfer [Druschel and Peterson, 1993].

IO-Lite is a unified buffer scheme that has been implemented in FreeBSD
[McKusick et al., 1996]. It provides immutable buffers that may only be initialized by
the initial producer of the data. These immutable data buffers are kept in aggregates,
tuples of address and length pairs, which are mutable. Adding extra data to an IO-Lite

SECTION 4.4 Discussion and Comparison 113

buffer consists of creating a new immutable data buffer and adding a tuple for it to the
aggregate list. To transfer a buffer from one protection domain to another it suffices to
pass the aggregate for it. When passing an aggregate, the kernel will ensure that the
immutable data buffers are mapped read-only into the recipient’s virtual address space.
Implementing IO-Lite on Paramecium would be relatively straightforward.

Instead, we designed a different shared buffer scheme, where the sharing granu-
larity is a buffer pool. In our scheme data buffers are mutable and therefore access
control on the buffer pool is much more important. Once a shared buffer is created and
every party has successfully bound to it, which causes the memory to be mapped into
the appropriate protection domains, data is passed by passing an offset into the shared
buffer space. The fact that buffers are mutable and shared among multiple parties
requires extra care in allocating buffers. For example, for buffers traversing up the pro-
tocol stack it is important that a higher layer does not influence the correctness of its
lower layers. The converse is true for buffers traversing down the protocol stack. This
is easily achieved by using different buffer pools.

The TCP/IP implementation for Paramecium is based on the Xinu protocol stack
[Comer and Stevens, 1994] with some modifications taken from the BSD network
stack [McKusick et al., 1996]. We heavily modified the stack to use the shared buffer
scheme described above, to make it multithreaded, and to take advantage of our pop-up
threads. The pop-up threads are used to shepherd incoming network messages through
the protocol stack to the user application. This is similar to the packet processing ideas
found in the X-kernel [Hutchinson et al., 1989]. Since the protocol stack we based our
work on was written as a teaching tool, the performance is poor. We did not attempt to
improve this, since we used it only to demonstrate our system and provide remote login
capabilities.

Active filters are an efficient and flexible event demultiplexing technique. The
filter consists of two components, a condition part and an action part. The condition
part establishes whether to execute the associated action part and in order to implement
condition expressions efficiently we place certain restrictions on it. These restrictions
allow the efficient evaluation of filter expressions. Both filter condition and action
expressions are written in virtual machine instructions which can be dynamically com-
piled at run time. We used the virtual machine approach, as opposed to code signing,
to achieve portability, security, and efficiency. The virtual machine is based on
VCODE, a very fast dynamic code generation system [Engler, 1996]. We have
extended it to include safe access to user data structures, added synchronization, and
optimized it for condition matching. With it we have explored some sample applica-
tions that use active filters for load balancing, distributed shared memory, and predicate
addressing.

Active filters are in some sense a different extension technique to the one we
used to extend our kernel. They are more akin to ExOS’s application specific handlers
(ASH) [Engler et al., 1994] and their application in a dynamic packet filter (DPF)
[Engler and Kaashoek, 1996]. Just as with ASHes, active filters allow migration of

114 Operating System Extensions CHAPTER 4

computation into the kernel and user address spaces, but active filters are also designed
to migrate to devices such intelligent I/O devices or even FPGAs. The primary use of
active filters is for event demultiplexing, for this we have incorporated an efficient
filter selection mechanism that can be used for demultiplexing events based on arbi-
trary filter expressions.

Active filters have a number of interesting applications, besides the ones men-
tioned in Section 4.3.2 they can also be used for system call argument passing as in
Pebble [Gabber et al., 1999]. One of the most interesting examples of active filters is
the ability to safely migrate computations into an intelligent I/O device. This is dif-
ferent from U-Net where the network device is safely virtualized [Von Eicken et al.,
1995]. Our work is more closely related to Rosu’s Virtual Communication Machine
(VCM) architecture [Rosu et al., 1998] where, as in our system, applications have
direct access to the network I/O device and the VCM enforces protection and commun-
icates with the host application using shared memory segments.

SECTION 4.4 Discussion and Comparison 115

5

Run Time Systems

In this chapter we discuss the design of two major applications for Paramecium,
which demonstrates its strength as an extensible operating system. The first application
is an extensible run-time system for Orca, a programming language for parallel pro-
gramming. For this system the emphasis is on providing a frame work for application
specific optimizations and show examples where we weaken the ordering requirements
for individual shared objects, something that is quite hard to do in the current system.

The second application consists of a secure Java™ Virtual Machine. The Java
Virtual Machine is viewed by many as inherently insecure despite all the efforts to
improve its security. In this chapter we describe our approach to Java security and dis-
cuss the design and implementation of a system that provides operating system style
protection for Java code. We use Paramecium’s lightweight protection domain model,
that is, hardware separated protection domains, to isolate Java classes and provide:
access control on cross domain method invocations, efficient data sharing between pro-
tection domains, and memory and CPU resource control. Apart from the performance
impact, these security measures, when they do not violate the policy, are all transparent
to the Java programs. This is even true when a subclass is in one domain and its super
class is in another. To reduce the performance impact we group classes and share them
between protection domains and map data in a lazy manner as it is being shared.

The main thesis contributions in this chapter are an extensible run-time system
for parallel programming and a secure Java virtual machine. Our secure Java virtual
machine, in particular, contains many subcontributions: adding hardware fault isolation
to a tightly coupled language, a new run-time data relocation technique, and a new gar-
bage collection algorithm for collecting memory over multiple protection domains
while taking into account sharing and security properties.

116

5.1. Extensible Run Time System for Orca
Orca [Bal et al., 1992] is a programming language based on the shared object

model , which is an object-based shared memory abstraction. In this model the user has
the view of sharing an object among parallel processes and with multiple parties invok-
ing methods on it. It is the task of the underlying run-time system to preserve con-
sistency and implement this view efficiently. The current run-time system guarantees
sequential consistency [Lamport, 1979] for shared object updates. The shared objects
are implemented by either fully replicating the shared object state or by maintaining a
single copy. This trade-off depends on the read/write ratio of the shared object. If a
shared object has a higher read ratio it is better to replicate the state among every party
so that reads are local and therefore fast. Writes use a global consistent update protocol
which is therefore slower. When a shared object has a higher write ratio, keeping a sin-
gle copy of the shared object state is more efficient since it reduces the cost of making
a globally consistent update. Current Orca run-time systems implement this scheme
and dynamically adjust the shared object state distribution at run time [Bal et al., 1996].

The Orca system includes a compiler and a run-time system. The run-time sys-
tem uses I/O, threads, marshaling, group communication, message passing, and RPC to
implement the shared objects and many of its optimizations. Current run-time systems
implement a number of these components and rely on the underlying operating system
to provide the rest. In a sense, the current run-time system is statically configurable in
that it requires rebuilding and some redesigning at the lowest layers when it is ported to
a new platform or when support is added for a new device.

In FlexRTS [Van Doorn and Tanenbaum, 1997] we enhanced the Orca run-time
system to take advantage of Paramecium’s extensibility mechanisms. The ability to
dynamically load components enabled us to specify new or enhanced implementations
at run time. Combined with the ability to load these implementations securely into the
kernel it is possible to build highly tuned and application specific run-time systems.
The advantages of using a Paramecium-based run-time system over the existing system
are: performance enhancements, debugging, tracing, and the ability to create applica-
tion specific implementations for individual Orca objects.

In a sense, FlexRTS shares the same philosophy as the Paramecium kernel: it
starts with a minimal run-time system which is extended dynamically on demand.
Unlike the kernel, where the guideline was to remove everything from the kernel that
was not necessary to maintain the integrity of the system, FlexRTS follows the guide-
line of removing everything from the run-time system that dictated a particular imple-
mentation. That is, the base run-time system does not include a component that
imposes a certain implementation, such as a group communication protocol or a thread
package.

The key advantage of FlexRTS is the ability to provide application specific
implementations for individual shared objects and control their environment. We con-
trol a shared object’s implementation by instantiating its implementation in a program-

SECTION 5.1 Extensible Run Time System for Orca 117

mer defined place in the Paramecium per-process name space and using the name space
search rules which were described in Chapter 2. For example in Figure 5.1 we have a
component called /program/shared/minimum , representing a shared integer object.
This shared integer implementation requires a datagram service for communicating
with other instances of this shared integer object located on different machines. By
associating a search path with the component name, we can control which datagram
service, registered under the predefined name datagram, it will use. In this case
/program/shared/minimum will use /program/datagram . When no search path is asso-
ciated with a given name, its parent name is used recursively up to the root until a
search path is found. This allows us to control groups of components by placing an
overriding name higher in the hierarchy.

/

nucleus services program

events virtual ... thread alloc ... tsp shared datagram

minimum

bind

Figure 5.1. Example of controlling a shared object binding to a name.

The advantage of controlling user level components at binding time is the ability
to provide different implementations that include performance improvements or debug-
ging code. Individual shared object implementations can use different marshaling rou-
tines, different network protocols, different networks, debugging versions, etc. On
machines where the context switch costs are high, all of the protocol stacks and even
drivers for nonshared devices can be loaded into the run-time system to improve its
performance. This scheme can also be used to reduce the copying of packets [Bal et
al., 1997].

Placing components into the kernel is useful for performance improvements and
availability. The performance improvements are the result of a reduced number of con-
text switches and the direct access to devices which are shared among other processes.
Drivers for these cannot be loaded into user space.

118 Run Time Systems CHAPTER 5

On time-shared systems it is often useful to place services that are performance
bottle-necks in the kernel for availability reasons. These are always runnable and usu-
ally do not get paged out, even under a high load. For example, consider a collection of
workstations computing on a parallel problem with a job queue. The job queue is a
perfect candidate to be down-loaded into the kernel. Requests for new work from a
process on a different machine would then be dealt with immediately without having to
wait for the process owning the job queue to be paged in or scheduled.

Hybrid situations, where part of the component is in the kernel and part in user
space, are also possible. For example, consider the thread package on our implementa-
tion platform. Because of the SPARC architecture each thread switch requires a trap
into the kernel to save the current register window set. To amortize this cost we instan-
tiate the thread package scheduler in the kernel, and use synchronization state sharing
to allow fast thread synchronization from user and kernel space. Although possible, it
is undesirable to load the whole program into the kernel. It is important for time-
sharing and distributed systems to maintain some basis of system integrity that, for
example, can be used to talk to file servers or reset machines. Adding new components
to the kernel should be done sparingly.

Our FlexRTS run-time system is implemented as a component according to our
object model (see Chapter 2). It consists of an Orca class which exports the standard
object interface, the standard class interface, and the Orca process interface. This latter
interface is used to create new processes, possibly on different processors. The Orca
shared objects are instantiated by creating an instance of this Orca class. It is up to the
run-time system to implement Orca’s language semantics which for shared objects con-
sists of providing sequential consistency. All though in some application specific cases
these language semantics can be relaxed to provide more efficient shared object imple-
mentations.

The FlexRTS component exports two main interfaces. The first is the Orca pro-
cess interface which is part of the class. It assists in creating new Orca processes and
Orca shared objects. The latter are not created through the standard class interface
since they require additional arguments. The interface for Orca shared objects is
shown in Figure 5.2. It consists of reader-writer mutex like functions to signal the start
and end of read and write operations (start_read, end_read, start_write, and
end_write). These are performed in-line by compiler generated code if no synchroniza-
tion is required. Otherwise, the dooperation method is used to invoke a method on the
Orca object. The isshared method determines whether the object is shared or local.
Before creating a new object the run-time system checks the instance name space to
determine whether a specific implementation already exists. If an implementation is
found and it exports the Orca shared object interface as described above, it is used
instead of the one provided by the run-time system. This enables applications to use
specific shared object instances.

SECTION 5.1 Extensible Run Time System for Orca 119

� ���

Method Description� �� ���

localread = start_read() Signal the object implementation that a read opera-

tion will be performed. When this function returns

nonzero the read can be performed locally.
� ���

end_read() Signals the end of a read operation.
� ���

localwrite = start_write() Signal the object implementation that a write opera-

tion will be performed. When this function returns

nonzero the write can be performed locally.
� ���

end_write() Signals the end of a write operation.
� ���

shared = isshared() Is this a shared Orca object?
� ���

dooperation(operation, arguments, results) Perform an operation on the object. The kind of

operation, read or write, is determined by the sur-

rounding start and end method calls.
� ���
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 5.2. Orca shared object interface.

In the next subsections we discuss some extensions for our FlexRTS run-time
system. These extensions include an object-based group active message protocol to
provide efficient shared-object updates [Van Doorn and Tanenbaum, 1994] and a
shared integer object that is implemented partially in the kernel and partially in the
user’s address space. We complete this section by some specific examples of how
parallel programs can take advantage of optimizations provided by our extensible run-
time system.

5.1.1. Object-based Group Active Messages
The performance of parallel programming systems on loosely-coupled machines

is mainly limited by the efficiency of its message passing communication architecture.
Rendezvous and mailboxes are the traditional communication mechanisms upon which
these systems are built. Unfortunately, both mechanisms incur a high latency at the
receiver side between arrival and final delivery of the message.

An alternative mechanism, active messages [Von Eicken et al., 1992], reduces
this latency by integrating the message data directly into the user-level computation as
soon as it arrives. The integration is done by a user specified handler, which is invoked
as soon as possible after the hardware receives the message.

For interrupt-driven architectures the most obvious design choice is to run the
handler directly in the interrupt service routine. This raises, however, a number of
problems: protection, possibility of race conditions, and the possibility of starvation
and deadlock. Consequently, the handler cannot contain arbitrary code or run indefin-
itely.

120 Run Time Systems CHAPTER 5

The shared data-object model [Bal, 1991] provides a powerful abstraction for
simulating distributed shared memory. Instead of sharing memory locations, objects
with user-defined interfaces are shared. Objects are updated by invoking operations via
their interfaces. The details of how these updates are propagated are hidden by the
implementation. All operations on an object are serialized.

Shared objects are implemented using active replication. To do this efficiently,
we have implemented a group communication system using active messages. In our
implementation, the run-time system associates a mutex and a number of regular and
special operations with each object. These special operations are invoked by sending
an active message. They are special in that they must not block, cause a protection vio-
lation, or take longer than a certain time interval. They are executed in the network
interrupt handler and run to completion once started. This means that once they are
executing they are never preempted by other active messages or user processes. Other
incoming active messages are buffered by network hardware which may eventually
start dropping messages when the buffers run out. Hence the need for a bounded exe-
cution time. When the mutex associated with an object is locked, all incoming active
messages for it are queued and executed when the mutex is released. Therefore, active
message operations do not need to acquire or release the object’s mutex themselves
since it is guaranteed to be unlocked at the moment the operation is started.

Active message invocations are multicast to each group member holding a
replica of the shared-object. These multicasts are totally-ordered and atomic. That is,
in the absence of processor failures and network partitions it is guaranteed that when
one member receives the invocation, all the others will too, in exactly the same order.

Associating a lock with each object is necessary to prevent an active message
from starting an operation while a user operation was already in progress. Active mes-
sage operations are bounded in execution time to prevent deadlock and starvation. The
restrictions placed on active message handler are currently expected to be enforced by
the compiler (i.e., no unbounded loops) and the run-time system. These assumptions
may be relaxed by using pop-up threads as described in Section 4.1.

Each replica of the shared object is registered at the kernel under a unique object
name together with an array of pointers to its operations. To perform a group active
message operation, a member multicasts an invocation containing the object name, the
operation to be performed (an index into the object’s interface array), and optional
arguments.

The multicasting is performed by a sequencer protocol, shown in Figure 5.3, that
is akin to Amoeba’s PB protocol [Kaashoek and Tanenbaum, 1991]. In a sequencer
protocol, one member is assigned the special task of ordering all messages sent to the
group. In order to send a message to the group, a member sends the message to the
sequencer which will assign a unique and increasing sequence number to the message
before multicasting it to the group. The main difference between our new protocol and
the PB protocol is that in our protocol the individual members maintain the history of
messages they sent themselves instead of the sequencer. This makes the sequencer as

SECTION 5.1 Extensible Run Time System for Orca 121

fast as possible since it doesn’t have to keep any state. The sequencer could even be
implemented as an active filter on the intelligent network interface card. Our imple-
mentation takes advantage of the underlying hardware multicasting capabilities. For
efficiency reasons, we have limited the size of the arguments to fit in one message.

Sequencer Host 1 Host 2Host 3

Sequencer Host 1 Host 2 Host 3

2:multicast msg + seqno

1: multicast lost seqno

2: resend msg

1: send msg

Multicasting a message:

Recovering from a lost message:

Figure 5.3. Group multicast with a sequencer.

Recovery of lost messages occurs when a member notices a gap in the sequence
numbers of the received messages. In such a case, the member multicasts to the group
that it has missed the message. The member that originated the message will send it
again as a point-to-point message to the member that missed it.

When sending a message to the sequencer, the member includes the sequence
number of the last message the member successfully delivered to the application. The
sequencer uses this to determine the lower bound on the sequence numbers seen by
every member and piggy backs it on every message. The members use this additional
message data to purge their message queues since they do not have to remember mes-
sages received by every member. Silent members periodically send an information
messages to the sequencer containing the sequence number of the last delivered mes-
sage. This prevents silent members from filling up the message queues.

When a network packet containing an invocation arrives at a machine, it is
dispatched to the active message protocol code. This code saves machine registers,
examines device registers, and queues a software interrupt which, in turn, calls our pro-
tocol dispatcher. This routine does all of the protocol processing. Once it has esta-
blished that the invocation is valid, it checks the associated mutex. If this mutex is
locked, it queues the request on a per-object queue in FIFO order. If the mutex is not

122 Run Time Systems CHAPTER 5

locked, the dispatch routine maps in the context of the process to which the object
handler belongs and makes an up call to it. Whenever an object’s mutex is released its
lock queue is checked.

The main problems with active messages are related to the incoming message
handler: can an active message operation block, how to prevent it from causing protec-
tion violations, and how long can it execute? In our current implementation active
message handlers are user specified interrupt routines which should not block and
should run to completion with a certain time interval. In our model these restrictions
are expected to be enforced by the compiler and the run-time system.

A more general view is conceivable where user-level handlers have no limita-
tions on the code or on the time to execute. One possible implementation is the use of
continuations [Hsieh et al., 1994] whenever a handler is about to block. However, with
continuations it is hard to capture state information and dealing with exceeding execu-
tion quanta is tedious.

Another possible implementation is to create a pop-up thread for the active mes-
sage handler (see Chapter 4 for a discussion). This pop-up thread is promoted to a real
thread when it is about to block or when it runs out of time. The pop-up thread is
created automatically by means of the processor’s interrupt mechanism. Every net-
work device has its own page of interrupt stack associated with it. Initially the handler
executes on this stack and when it is turned into a real thread it inherits this stack and
the network device’s interrupt stack is replaced by a new page. This requires a reason-
able number of preallocated interrupt stack pages. When we run out of these we drop
incoming messages and rely on the active message protocol to recover.

5.1.2. Efficient Shared Object Invocations
To get some idea of the trade-offs and implementation issues in a flexible run-

time system, consider the Orca shared object definition in Figure 5.4. This object
implements a shared integer data object with operations to set a value, assign, return
the value, value, and wait for a specific value, await. The methods from this object
instance may be invoked from different, possibly distributed, Orca processes while
maintaining global sequential consistency.

There are different ways to implement this shared integer object on Paramecium.
They all depend on a trade-off between integrity, performance, and semantics. That is,
if we implement the shared integer object in the kernel and consequently sacrifice some
of the integrity of the system we can improve the performance by using active mes-
sages and eliminating cross protection domain calls. Likewise, if we relax the shared
integer object semantics to unreliable PRAM consistency instead of sequential con-
sistency, we can use a simple unreliable multicasting protocol instead of a heavyweight
total ordered group communication protocol. Of course, these trade-offs do not always
make sense. On a multiuser system, trading system integrity for performance is not an
option, but on an application-specific operating system it might be. Even for

SECTION 5.1 Extensible Run Time System for Orca 123

object specification IntObject;
operation value(): integer;
operation assign(v: integer);
operation await(v: integer);

end;

object implementation IntObject;
x: integer;

Return the current object value
operation value(): integer
begin return x end;

Assign a new value to the object
operation assign(v: integer);
begin x := v end;

Wait for the object to become equal to value v
operation await(v: integer);
begin guard x = v do od end;

begin x := 0 end;

Figure 5.4. An Orca shared integer object.

application-specific operating systems one would generally prefer the ability to debug a
program over sacrificing system integrity.

In the remainder of this section we explore the design of a shared integer object
that is implemented as a safe kernel extension. The idea behind this concept is that the
shared integer kernel extension is among a set or toolbox of often used Orca shared
object implementations which the programmer can instantiate at run time. The Orca
program and run-time system itself still run as a normal user process, only the safe
extensions are loaded into the kernel’s address space. The goal of this work is to pro-
vide an Orca run-time system with a normal process failure model where some com-
mon shared object implementations may be loaded into the kernel at run-time.

Each method of this shared integer object implementation can be invoked
remotely. For an efficient implementation we use a technique similar to optimistic
active messages [Van Doorn and Tanenbaum, 1994; Von Eicken et al., 1992; Wallach
et al., 1995]. When a message arrives, the intended object instance is looked up and
the method is invoked directly from the interrupt handler. When the method is about to
block on a mutex, it is turned into a regular thread.

To reduce the communication latency and provide higher availability for this
shared object instance, we map its code read-only into both the kernel and user address
spaces. This allows the methods to be invoked directly by kernel and possibly by the
user. The latter depends on the placement of the instance state. Under some conditions

124 Run Time Systems CHAPTER 5

the user can manipulate the state directly; others require a trap into the kernel. Obvi-
ously, mapping an implementation into the kernel requires it to be signed before hand.

In this simple example, mapping the object instance data as read/write in both
user and kernel address space would suffice, but most objects require stricter control.
To prevent undesired behavior by the trusted shared object implementation in the ker-
nel, we map the object state as either read-only for the user and read-write for the ker-
nel or vice versa, depending on the read/write ratio of its methods. For example, when
the local (i.e., user) read ratio is high and the remote write ratio is high, the instance
state is mapped read/writable in the kernel and readable in the user address space. This
enables fast invocation of the value and assign methods directly from kernel space
(i.e., active messages calls), and the value method from user space. In order for the
user to invoke assign it has to trap to kernel space.

Another example of extending the kernel is that of implementing Orca guards.
Guards have the property that they block the current thread until their condition, which
depends on the object state, becomes true. In our example, a side effect of receiving an
invocation for assign is to place the threads blocked on the guard on the run queue after
their guard condition evaluated to true. In general the remote invoker tags the invoca-
tion with the guard number that is to be re-evaluated.

For our current run-time system we are hand-coding in C++ a set of often used
shared object types (shared integers, job queues, barriers, etc). These implementations
are verified, signed, and put in an object repository. For the moment, all our extensions
and adaptations involve the thread and communication system, i.e., low level services.
These services provide call-back methods for registering handlers. For a really fast and
specialized implementation, for example the network driver, one could consider
integrating it with the shared object implementation.

5.1.3. Application Specific Optimizations
In this section we discuss some typical Orca applications and discuss how they

can benefit from our flexible run-time system. These applications are: the traveling
salesman problem, successive overrelaxation, and a 15-puzzle using the IDA * tree
search algorithm.

Traveling Salesman Problem
The traveling salesman problem (TSP) is the following classical problem [West,

1996]: given a finite number of cities and a cost of travel between each pair, determine
the cheapest way of visiting all cities and returning to the starting city. In graph theory
terms, the TSP problem consists of finding a Hamiltonian cycle in a directed graph
with the minimum total weight.

In order to implement a parallel program that solves these problems we use a
branch-and-bound type of algorithm. That is, the problem is represented as a tree with
the starting city as the root. From the root a labeled edge exists to each city that can be

SECTION 5.1 Extensible Run Time System for Orca 125

reached from that root, this is applied recursively for each interior node. Eventually,
this will lead to a tree representing the solution space with the starting city as the root
and all the leaves, and each path from the root to the leaf represents a Hamilton tour.
This tree is then searched but only solutions that are less than the bound are considered.
If a solution that is less than the current bound is found it will become the new bound
and further prunes the search space.

Parallelizing the TSP problem using this branch-and-bound algorithm is straight-
forward. Arbitrary portions of the search space can be forked off to separate search
processes and it is only necessary to share the bound updates. The graph data itself is
static and does not require sharing. An Orca implementation of TSP would implement
the bound as a shared integer object [Bal, 1989] with all its sequential consistency
guarantees. However, the TSP solving algorithm does not require such a strong order-
ing guarantee on the current bound. Instead a much weaker guarantee, such as unreli-
able and unordered multicast, would suffice. After all, the bound is only a hint to help
prune the search tree. Delayed, unordered, or undelivered new bounds will not influ-
ence the correctness of the solution, just the running time of the program. In the event
of many bound updates, the performance improvements by relaxing the semantics for
this single shared object may outweigh the need for sequential consistency.

Unlike the standard Orca system, in FlexRTS it is possible to add a shared object
implementation that relaxes the sequential consistency requirement. By simply regis-
tering the new shared object implementation in the appropriate location, the run-time
system will use it instead of its own built-in implementation. This special-purpose
object implementation could use, for example, unreliable Ethernet multicasts to distri-
bute updates. A different implementation could include the use of active filters, such
as described in Section 4.3.2, which would only select messages that report a better
bound than the one currently found by the local search process.

Successive Overrelaxation
Successive Overrelaxation (SOR) is a iterative method for solving discrete

Laplace equations on a grid. SOR is a slight modification of the Gauss-Seidel algo-
rithm that significantly improves the convergence speed. The SOR method computes
the weighted average of its four neighbors between two iterations, av, and for each
point in the grid it computes M[r,c] = M[r,c] + ω (av − M[r,c]), where ω is the relaxa-
tion parameter (typically 0 < ω < 2). The algorithm terminates when the computation
converges.

SOR is an inherently sequential process that can be parallelized by dividing the
grid in subgrids such that each process is allocated a proportional share of consecutive
grid columns [Bal, 1989]. Each process can then compute the SOR iterations but for
the grid borders it has to communicate with the processes that hold the neighboring
subgrid.

Admitted, SOR is a difficult program for Orca since it consists mainly of point-
to-point communication between two neighbors rather than using group multicasts and,

126 Run Time Systems CHAPTER 5

P1: M[1..10, 1..20] P2: M[11..20, 1..20]

Figure 5.5. Boundary conditions for a parallel SOR algorithm.

as in the previous TSP example, guaranteeing sequential consistency is probably too
strong since the algorithm converges toward a solution. Instead, a FIFO or PRAM ord-
ering guarantee suffices. In this situation we could implement a special-purpose shared
column object, representing a column shared between two neighbors, that uses a simple
point-to-point communication protocol (i.e., go-back-n or selective repeat) to update
the shared state and batch updates. Using FlexRTS, the programmer can add this new
shared object to the run-time system without changing the original Orca SOR program.

Iterative Deepening Algorithm
The iterative deepening A * algorithm (IDA) is a provably optimal, in terms of

memory usage and time complexity, heuristic tree search algorithm [Korf, 1985]. The
IDA * is a branch-and-bound type of algorithm based on the concept of depth-first
iterative deepening but it prunes the search tree by using a heuristic. The heuristic is
part of the A * cost function which is used during the depth-first search to prune
branches of the search tree. A typical application of the IDA * algorithm is to solve a
15-puzzle. See Luger and Stubblefield [Luger and Stubblefield, 1989] for more detail
on the IDA * algorithm and its applications.

Our implementation of a parallel 15-puzzle solver consists of a number of paral-
lel workers, a distributed job queue and the current search depth. Each worker process
takes a job from the job queue and uses the IDA * algorithm to search the game tree up
to the specified search depth. If no solution is found at that depth, the left over subtrees
are placed on the work queue. The workers continue until a solution is found or the job
queue becomes empty.

SECTION 5.1 Extensible Run Time System for Orca 127

This application can take advantage of FlexRTS by implementing special-
purpose shared objects for the search depth and the job queue. The search depth value
is controlled by the main process that determines the iteration depth and the variable is
read by all worker processes. For this variable the shared integer object implementa-
tion described in the previous section is a good choice. The job queue, on the other
hand, has a high read and write ratio and under the traditional run-time system would
be implemented by a single copy. In FlexRTS we can implement a separate job queue
object that would maintain a write back cache of jobs. That is, jobs accumulate at the
process that generates it unless other processes run out or a certain threshhold is
reached. Unlike the other examples, sequential consistency for the search depth and
job queue shared objects is important in this application.

5.2. Secure Java Run Time System
Java™ [Gosling et al., 1996] is a general-purpose programming language that

has gained popularity as the programming language of choice for mobile computing
where the computation is moved from the initiator to a client or server. The language
is used for World Wide Web programming [Arnold and Gosling, 1997], smart card
programming [Guthery and Jurgensen, 1998], embedded device programming [Esmer-
tec, 1998], and even for providing executable content for active networks [Wetherall
and Tennenhouse, 1996]. Three reasons for this popularity are Java’s portability, its
security properties, and its automatic memory allocation and deallocation.

Java programs are compiled into an intermediate representation called bytecodes
and run on a Java Virtual Machine (JVM). This JVM contains a bytecode verifier that
is essential for Java’s security. Before execution begins the verifier checks that the
byte codes do not interfere with the execution of other programs by assuring they use
valid references and control transfers. Bytecodes that successfully pass this verifica-
tion are executed but are still subject to a number of other security measures imple-
mented in the Java run-time system.

All of Java’s security mechanisms depend on the correct implementation of the
bytecode verifier and a secure environment in which it can run. In our opinion this is a
flawed assumption and past experience has shown a number of security problems with
this approach [Dean et al., 1996; Felten, 1999; Sirer, 1997]. More fundamental is that
from software engineering research it is known that every 1000 lines of code contain
35-80 bugs [Boehm, 1981]. Even very thoroughly tested programs still contain on
average about 0.5-3 bugs per 1000 lines of code [Myers, 1986]. Given that JDK 2 con-
tains ∼1.6M lines of code it is reasonable to expect 56K to 128K bugs. Granted, not all
of these bugs are in security critical code, but all of the code is security sensitive since
it runs within a single protection domain.

Other unsolved security problems with current JVM designs are its vulnerability
to denial of service attacks and its discretionary access control mechanisms. Denial of
service attacks are possible because the JVM lacks proper support to bound the amount
of memory and CPU cycles used by an application. The discretionary access control

128 Run Time Systems CHAPTER 5

model is not always the most appropriate one for executing untrusted mobile code on
relatively insecure clients.

Interestingly, exactly the same security problems occur in operating systems.
There they are solved by introducing hardware separation between different protection
domains and controlled access between them. This hardware separation is provided by
the memory management unit (MMU), an independent hardware component that con-
trols all accesses to main memory. To control the resources used by a process an
operating system limits the amount of memory it can use, assigns priorities to bias its
scheduling, and enforces mandatory access control. However, unlike programming
language elements, processes are coarse grained and have primitive sharing and com-
munication mechanisms.

An obvious solution to Java’s security problems is to integrate the JVM with the
operating system’s process protection mechanisms. How to adapt the JVM efficiently
and transparently (i.e., such that multiple Java applets can run on the same JVM while
protected by the MMU) is a nontrivial problem. It requires a number of hard operating
system problems to be resolved. These problems include: uniform object naming,
object sharing, remote method invocation, thread migration, and protection domain and
memory management.

The central goal of our work was the efficient integration of operating system
protection mechanisms with a Java run-time system to provide stronger security
guarantees. A subgoal was to be transparent with respect to Java programs. Where
security and transparency conflicted they were resolved by a separate security policy.
Using the techniques described in this paper, we have built a prototype JVM with the
following features:

� Transparent, hardware-assisted separation of Java classes, provided that they
do not violate a preset security policy.

� Control over memory and CPU resources used by a Java class.
� Enforcement of mandatory access control for Java method invocations, class

inheritance, and system resources.
� Employment of the least privilege concept and the introduction of a minimal

trusted computing base (TCB).
� The JVM does not depend on the correctness of the Java bytecode verifier for

interdomain protection.

In our opinion, a JVM using these techniques is much more amenable to an
ITSEC [UK ITSEC, 2000] or a Common Criteria [Common Criteria, 2000] evaluation
than a pure software protection based system.

Our JVM consists of a small trusted component, called the Java Nucleus , which
acts as a reference monitor and manages and mediates access between different protec-
tion domains (see Figure 5.6). These protection domains contain one of more Java
classes and their object instances. The Java classes themselves are compiled to native

SECTION 5.2 Secure Java Run Time System 129

machine code rather than being interpreted. The references to objects are capabilities
[Dennis and Van Horn, 1966], which are managed by the Java Nucleus.

Web Server Mail ServerServlet
Executable

Paramecium kernelTCB

Kernel

User

content

Hardware

Java Nucleus

(module)

Context 1 Context 2 Context 3 Context 4

Figure 5.6. Secure JVM overview. In this example the Java Nucleus is instan-

tiated as a kernel module and it mediates access between all the shown con-

texts.

For an efficient implementation of our JVM we depend on the low-level operat-
ing system functionality provided by Paramecium [Van Doorn et al., 1995]. The Java
Nucleus uses its low-level protection domain and memory management facilities for
separation into protection domains and its IPC facility for cross domain method invoca-
tions. The data is shared on demand using virtual memory remapping. When the data
contains pointers to other data elements, they are transparently shared as well. The gar-
bage collector, which is a part of the Java Nucleus, handles run-time data relocation,
sharing and revocation of data elements, protection, and the reclaiming of unused
memory cells over multiple protection domains.

In the next section of this chapter we will describe the problems involved in the
integration of a language and an operating system. Section 5.2.2 discusses the separa-
tion of concerns when designing a JVM architecture with a minimal TCB. It focuses
on the security guarantees offered at run time and the corresponding threat model.
Since our system relies on Paramecium primitives, we briefly repeat the features the
system depends on in Section 5.2.3. Section 5.2.4 describes the key implementation
details of our JVM. It discusses the memory model used by our JVM, its IPC mechan-
ism, its data sharing techniques, and its garbage collector. Section 5.2.5 briefly
discusses some implementation details and some early experiences with our JVM,
including a performance analysis and some example applications. The related work,
conclusions, and future extensions are described in Section 5.3.

130 Run Time Systems CHAPTER 5

5.2.1. Operating and Run Time System Integration
Integration of an operating system and a language run-time system has a long

history (e.g., Intel iAPX 432 [Organick, 1983], Mesa/Cedar [Teitelman, 1984], Lisp
Machines [Moon, 1991], Oberon [Wirth and Gütknecht, 1992], JavaOS [Saulpaugh and
Mirho, 1999], etc.), but none of these systems used hardware protection to supplement
the protection provided by the programming language. In fact, most of these systems
provide no protection at all or depend on a trusted code generator. For example, the
Burroughs B5000 [Burroughs, 1961] enforced protection through a trusted compiler.
The Burroughs B5000 did not provide an assembler, other than one for in-house
development of the diagnostic software, since it could be used to circumvent this pro-
tection.

Over the years these integrated systems have lost popularity in favor of time-
shared systems with a process protection model. These newer systems provide better
security and fault isolation by using hardware separation between untrusted processes
and controlling the communication between them. A side effect of this separation is
that sharing can be much harder and less efficient.

The primary reasons why the transparent integration of a process protection
model and a programming language are difficult are summarized in Figure 5.7. The
key problem is their lack of a common naming scheme. In a process model each pro-
cess has its own virtual address space, requiring techniques like pointer swizzling to
translate addresses between different domains. Aside from the naming issues, the shar-
ing granularity is different. Processes can share coarse grained pages while programs
share many small variables. Reconciling the two as in distributed shared memory sys-
tems [Li and Hudak, 1989] leads to the undesirable effects of false sharing or fragmen-
tation. Another distinction is the unit of protection. For a process this is an protection
domain, for programs it is a module, class, object, etc. Finally, processes use rudimen-
tary IPC facilities to send and receive blocks of data. Programs, on the other hand, use
procedure calls and memory references.

� ���

Process Protection Model Programming Language� �� ���

Name space Disjoint Single
� ���

Granularity Pages Variables
� ���

Unit Protection domain Class/object
� ���

Communication IPC Call/memory
� ���
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 5.7. Process protection model vs. programming language.

In order to integrate a process protection model and a programming language we
need to adapt some of the key process abstractions. Adapting them is hard to do in a

SECTION 5.2 Secure Java Run Time System 131

traditional operating system because they are hardwired into the system. Extensible
operating systems on the other hand provide much more flexibility (e.g., Paramecium,
OSKit [Ford et al., 1997], L4/LavaOS [Liedtke et al., 1997], ExOS [Engler et al.,
1995], and SPIN [Bershad et al., 1995b]). For example, in our system the Java Nucleus
acts as a special purpose kernel for Java programs. It controls the protection domains
that contain Java programs, creates memory mappings, handles all protection faults for
these domains, and controls cross protection domain invocations. These functions are
hard to implement on a traditional system but straightforward on an extensible operat-
ing system. A second enabling feature of extensible operating systems is the dramatic
improvement in cross domain transfer cost by eliminating unnecessary abstractions
[Bershad et al., 1989; Hsieh et al., 1993; Liedtke et al., 1997; Shapiro et al., 1996].
This makes the tight integration of multiple protection domains feasible. Another
advantage of using an extensible kernel is that they tend to be several orders of magni-
tude smaller than traditional kernels. This is a desirable property since the kernel is
part of the TCB.

For a programming language to benefit from hardware separation it has to exhibit
a number of requirements. The first one is that the language must contain a notion of a
unit of protection. These units form the basis of the protection system. Examples of
these units are classes, objects, and modules. Each of these units must have one or
more interfaces to communicate with other units. Furthermore, there need to be non-
language reasons to separate these units, like running multiple untrusted applets simul-
taneously on the same system. The last requirement is that the language needs to use a
typed garbage collection system rather than programmer managed dynamic memory.
This requirement allows a third party to manage, share and relocate the memory used
by a program.

The requirements listed above apply to many different languages (e.g., Modula3
[Nelson, 1991], Oberon [Wirth and Gütknecht, 1992], and ML [Milner et al., 1990])
and operating systems (e.g., ExOS [Engler et al., 1994], SPIN [Bershad et al., 1995b],
and Eros [Shapiro et al., 1999]), for our research we concentrated on the integration of
Paramecium and Java. Before discussing the exact details of how we solved each
integration difficulty, we first discuss the protection and threat model for our system.

5.2.2. Separation of Concerns
The goal of our secure JVM is to minimize the trusted computing base (TCB) for

a Java run-time system. For this it is important to separate security concerns from
language protection concerns and establish what type of security enforcement has to be
done at compile time, load time, and run time.

At compile time the language syntax and semantic rules are enforced by a com-
piler. This enforcement ensures valid input for the transformation process of source
code into bytecodes. Since the compiler is not trusted, the resulting bytecodes cannot
be trusted and, therefore, we cannot depend on the compiler for security enforcement.

132 Run Time Systems CHAPTER 5

At load time a traditional JVM loads the bytecodes and relies on the bytecode
verifier and various run-time checks to enforce the Java security guarantees. As we
discussed in the introduction to this section, we do not rely on the Java bytecode verif-
ier for security based on its size, complexity, and poor track record. Instead, we aim at
minimizing the TCB, and use hardware fault isolation between groups of classes and
their object instances, and control access to methods and state shared between them. A
separate security policy defines which classes are grouped together in a single protec-
tion domain and which methods they may invoke on different protection domains. It is
important to realize that all classes within a single protection domain have the same
trust level. Our system provides strong protection guarantees between different protec-
tion domains, i.e., interdomain protection. It does not enforce intradomain protection;
this is left to the run-time system if desirable. This does not constitute a breakdown of
security of the system. It is the policy that defines the security. If two classes in the
same domain, i.e., have the same trust level, misbehave with respect to one another,
this clearly constitutes a failure in the policy specification. These two classes should
not have been in the same protection domain.

The run-time security provided by our JVM consists of hardware fault isolation
among groups of classes and their object instances by isolating them into multiple pro-
tection domains and controlling access to methods and state shared between them.
Each security policy, a collection of permissions and accessible system resources,
defines a protection domain. All classes with the same security policy are grouped into
the same domain and have unrestricted access to the methods and state within it. Invo-
cations of methods in other domains pass through the Java Nucleus. The Java Nucleus
is a trusted component of the system and enforces access control based on the security
policy associated with the source and target domain.

From Paramecium’s point of view, the Java Nucleus is a module that is loaded
either into the kernel or into a separate user context. Internally, the Java Nucleus con-
sists of four components: a class loader, a garbage collector, a thread system, and an
IPC component. The class loader loads a new class, translates the bytecodes into native
machine codes, and deposits them into a specified protection domain. The garbage col-
lector allocates and collects memory over multiple protection domains, assists in shar-
ing memory among them, and implements memory resource control. The thread sys-
tem provides the Java threads of control and maps them directly onto Paramecium
threads. The IPC component implements cross protection domain invocations, access
control, and CPU resource usage control.

The JVM trust model (i.e., what is included in the minimal trusted computing
base) depends on the correct functioning of the garbage collector, IPC component, and
thread system. We do not depend on the correctness of the bytecode translator. How-
ever, if we opt to put some minimal trust in the byte code translator, it enables certain
optimizations that are discussed below.

SECTION 5.2 Secure Java Run Time System 133

Method X

Call M

Method M

Java Nucleus

Allow A to call M Deny B to call X

Deny B to call X

Allow A to call M

Hardware separation

Call X

Exception

Security policy

Domain CDomain BDomain A

Figure 5.8. The Java Nucleus uses hardware protection to separate Java

classes, which are placed in separate protection domains The Java Nucleus

uses a security policy to determine which domain can call which methods and

enforce access control.

References to memory cells (primitive types or objects) act as capabilities
[Dennis and Van Horn, 1966] and can be passed to other protection domains as part of
a cross domain method invocation (XMI) or object instance state sharing. Passing an
object reference results in passing the full closure of the reference. That is, all cells
that can be obtained by dereferencing the pointers that are contained in the cell of
which the reference is passed, without this resulting in copying large amounts of data, a
so-called deep copy. Capabilities can be used to implement the notion of least
privilege but capabilities also suffer from the classical confinement and revocation
problem [Boebert, 1984; Karger and Herbert, 1984]. Solving these is straightforward
since the Java Nucleus acts as a reference monitor. However, this violates the Java
language transparency requirement (see Section 5.3).

Our system does not depend on the Java security features such as bytecode verif-
ication, discretionary access control through the security manager, or its type system.
We view these as language security measures that assist the programmer during pro-
gram development which should not be confused or combined with system security
measures. The latter isolates and mediates access between protection domains and
resources; these measures are independent of the language. However, integrating
operating system style protection with the semantic information provided by the
language run-time system does allow finer grained protection and sharing than is possi-
ble in contemporary systems.

134 Run Time Systems CHAPTER 5

� ���

Granularity Mechanism� �� ���

Method Invocation access control
� ���

Class Instruction text sharing between domains
� ���

Class Object sharing between domains
� ���

Reference Opaque object handle
� ���

System Paramecium name space per domain
� ���
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

Figure 5.9. Security policy elements.

The security provided by our JVM is defined in a security policy. The elements
that comprise this policy are listed in Figure 5.9. They consist of a set of system
resources available to each protection domain, classes whose implementation is shared
between multiple domains, object instance state that is shared, and access control for
each cross domain method invocation.

The first policy element is a per method access control for cross protection
domain invocations. Each method has associated with it a list of domains that can
invoke it. A domain is similar to, and in fact implemented as, a Paramecium context,
but unlike a context, it is managed by the Java Nucleus which controls all the mappings
and exceptions for it. If the invocation target is not in this domain list, access is denied.
Protection is between domains, not within domains, hence there is no access control for
method invocations within the same domain.

To reduce the amount of memory used and the number of cross protection
domain calls (XMIs), the class text (instructions) can be shared between multiple
domains. This is analogous to text sharing in UNIX, where the instructions are loaded
into memory only once and mapped into each domain that uses it in order to reduce
memory requirements. In our case it eliminates the need for expensive XMIs. The
object instance state is still private to each domain.

Object instance state is transparently shared between domains when references to
it are passed over XMIs or when an object inherits from a class in a different protection
domain. Which objects can be passed between domains is controlled by the Java pro-
grams and not by the JVM. Specifying this as part of the security policy would break
the Java language transparency requirement. Per-method access control gives the JVM
the opportunity to indirectly control which references are passed.

In circumstances where object instance state sharing is not desirable, a class can
be marked as nonsharable for a specified domain. Object references of this class can
still be passed to the domain but cannot be dereferenced by it. This situation is similar
to client/server mechanisms where the reference acts as an opaque object handle. Since

SECTION 5.2 Secure Java Run Time System 135

Java is not a pure object-oriented language (e.g., it allows clients to directly access
object state) this mechanism is not transparent for some Java programs.

Fine grained access control of the system resources is provided by the Parame-
cium name space mechanism. If a service name is not in the name space of a protec-
tion domain, that domain cannot gain access to the service. The name space for each
protection domain is constructed and controlled by our Java Nucleus.

To further reduce the number of XMIs, classes with the same security policy are
grouped into the same protection domain. The number of XMIs can be reduced further
still by sharing the instruction text of class implementations between different domains.
The need for minimizing the numbers of XMIs was underscored by Colwell’s thesis
[Colwell, 1985] which discussed the of performance problems with the Intel iAPX 432.

� ���

Threat Protection mechanism� �� ���

Fault isolation Protection domains
� ���

Denial of service Resource control
� ���

Forged object references Garbage collector
� ���

Illegal object invocations XMI access control
� ���
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�

Figure 5.10. Threat model.

Figure 5.10 summarizes the potential threats our JVM can handle, together with
their primary protection mechanism. Some threats, such as covert channels, are not
handled in our system. Other threats, such as denial of service attacks caused by
improper locking behavior are considered policy errors. The offending applet should
not have been given access to the mutex.

5.2.3. Paramecium Integration
Our secure Java virtual machine design relies heavily on the availability of low-

level system services such as efficient IPC, memory management and name space
management. In this section we discuss how the Paramecium kernel enables our JVM
and we define the functionality upon which the Java Nucleus depends.

The key to our JVM design is the ability to efficiently communicate between dif-
ferent protection domains. For this we utilize Paramecium’s event and invocation
chain mechanisms. Our event mechanism provides an efficient cross protection
domain communication mechanism by raising an event that causes a handler to be
invoked instantaneously in a different domain. Part of this invocation is that a
predetermined number of arguments are passed from the invoker to the handler. A
sequence of event invocations caused by a single thread of control is called an invoca-
tion chain and forms the basis for our migrating thread package. This thread package
efficiently manages multiple threads operating in different protection domains.

136 Run Time Systems CHAPTER 5

The second enabling service provided by our kernel is memory and protection
domain management, of which memory management is divided into physical and vir-
tual memory management. These separate services are used extensively by the Java
Nucleus and allows it to have fine grained control over the organization of the virtual
memory address spaces. The Java Nucleus uses it to create and manage a single
shared address space among multiple protection domains with each protection domain
containing one or more Java classes. The exact memory mapping details are described
in the next section, but enabling the Java Nucleus to control the memory mappings on a
per page basis for these protection domains and handle all their fault events is crucial
for the design of the JVM. This, together with name space management, enables the
Java Nucleus to completely control the execution environment for the protection
domains and, consequently, the Java programs it manages.

Each protection domain has a private name space associated with it. It is
hierarchical and contains all the object instance names which the protection domain can
access. The name space is populated by the parent and it determines which object
instances its children can access. In the JVM case, the Java Nucleus creates all the pro-
tection domains it manages and consequently it populates the name spaces for these
domains. For most protection domains this name space is empty and the programs run-
ning in them can only communicate with the Java Nucleus using its cross domain
method invocation (XMI) mechanism. These programs cannot communicate directly
with the kernel or any other protection domain in the system since they do not have
access to the appropriate object instances. Neither can they fabricate them since the
names and proxies are managed by the kernel. Under certain circumstances determined
by the security policy, a protection domain can have direct access to a Paramecium
object instance and the Java Nucleus will populate the protection domain’s name space
with it. This is mostly used to allow Java packages, such as the windowing toolkits, to
efficiently access the system resources.

The Java Nucleus is a separate module that is either instantiated in its own pro-
tection domain or as an extension colocated with the kernel. Colocating the Java
Nucleus with the kernel does not reduce the security of the system since both are con-
sidered part of the TCB. However, it does improve the performance since it reduces
the number of cross protection domain calls required for communicating with the
managed protection domains.

5.2.4. Secure Java Virtual Machine
The Java Nucleus forms the minimal trusted computing base (TCB) of our secure

JVM. This section describes the key techniques and algorithms used by the Java
Nucleus.

In short, the Java Nucleus provides a uniform naming scheme for all protection
domains, including the Java Nucleus. It provides a single virtual address space where
each protection domain can have a different protection view. All cross protection
domain method invocations (XMIs) pass through our Java Nucleus, which controls

SECTION 5.2 Secure Java Run Time System 137

access, CPU, and memory resources. Data is shared on demand between multiple pro-
tection domains, that is, whenever a reference to shared data is dereferenced. Our Java
Nucleus uses shared memory and runtime reallocation techniques to accomplish this.
Only references passed over an XMI or object instances whose inherited classes are in
different protection domains can be accessed; others will cause security violations.
These protection mechanisms depend on our garbage collector to allocate and deallo-
cate typed memory, relocate memory, control memory usage, and keep track of owner-
ship and sharing status.

The Java Nucleus uses on-the-fly compilation techniques to compile Java classes
into native machine code. It is possible to use the techniques described below to build
a secure JVM using an interpreter rather than a compiler. Each protection domain
would then have a shared copy of the interpreter interpreting the Java bytecodes for
that protection domain. We have not explored such an implementation because of the
obvious performance loss of interpreting bytecodes.

The next subsections describe the key techniques and algorithms in greater detail.

Memory Organization
The Java Virtual Machine model assumes a single address space in which multi-

ple applications can pass object references to each other by using method invocations
and shared memory areas. This, and Java’s dependence on garbage collection, dictated
our memory organization.

Inspired by single address space operating systems [Chase et al., 1994], we have
organized memory into a single virtual address space. Multiple, possibly unrelated,
programs live in this single address space. Each protection domain has, depending on
its privileges, a view onto this address space. This view includes a set of virtual to phy-
sical memory page mappings together with their corresponding access rights. A small
portion of the virtual address space is reserved by each protection domain to store
domain specific data.

Central to the protection domain scheme is the Java Nucleus (see Figure 5.11).
The Java Nucleus is analogous to an operating system kernel. It manages a number of
protection domains and has full access to all memory mapped into these domains and
their corresponding access permissions. The protection domains themselves cannot
manipulate the memory mappings or the access rights of their virtual memory pages.
The Java Nucleus handles both data and instruction access (i.e., page) faults for these
domains. Page faults are turned into appropriate Java exceptions when they are not
handled by the system.

For convenience all the memory available to all protection domains is mapped
into the Java Nucleus with read/write permission. This allows it to quickly access the
data in different protection domains. Because memory addresses are unique and the
memory pages are mapped into the Java Nucleus protection domain, the Java Nucleus
does not have to map or copy memory as an ordinary operating system kernel.

138 Run Time Systems CHAPTER 5

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
�������������������
�������������������

���������
���������
���������

���������
���������
���������

���������
���������
���������

���������
���������
���������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	
	�	�	�	�	�	�	�	�	�	�	�	�	�	�	

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���
�������������������
�������������������
�������������������
�������������������
�������������������

�������������������
�������������������
�������������������
�������������������
������������������� �����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������
�����������������������������

region 2

private

private

4 GB

4 GB

4 GB

0

0

0

implementation

region 1

Mail context

Executable content context

region 0

RW

RW

RW

RW

X

X
RW
R

RW
X

Run Time Nucleus context

Run Time Nucleus

RW

Figure 5.11. Java Nucleus virtual memory map. The Java nucleus has full

read/write access to all memory used by the application contexts. The applica-

tion contexts have the same view but with different page protection attributes.

The view different protection domains have of the address space depends on the
mappings created by the Java Nucleus. Consider Figure 5.11. A mail reader applica-
tion resides in the context named mail. For efficiency reasons, all classes constituting
this application reside in the same protection domain; all executable content embedded
in an e-mail message is executed in a separate domain, say executable content. In this
example memory region 0 is mapped into the context executable content. Part of this
memory contains executable code and has the execute privilege associated with it.
Another part contains the stack and data and has the read/write privilege. Region 0 is
only visible to the executable content context and not to the mail context. Likewise,
region 2 is not visible to the executable content context. Because of the hardware
memory mappings these two contexts are physically separated.

Region 1 is used to transfer data between the two contexts and is set up by the
Java Nucleus. Both contexts have access to the data, although the executable content

context has only read access. Violating this access privilege causes a data access fault
to be generated which is handled by the Java Nucleus. It will turn the fault into a Java
exception.

SECTION 5.2 Secure Java Run Time System 139

Cross Domain Method Invocations
A cross domain method invocation (XMI) mimics a local method invocation

except that it crosses a protection domain boundary. A vast amount of literature exists
on low latency cross domain control transfer [Bershad et al., 1989; Hsieh et al.,
1993; Liedtke et al., 1997]. Our XMI mechanism is loosely based on Paramecium’s
system call mechanism, which uses events. The following example illustrates the steps
involved in an XMI.

Consider the protection domains A and B and a method M which resides in
domain B and a thread executing in domain A which calls method M. The Java
Nucleus generated the code in domain A and filled in the real virtual address for
method M. Hence, domain A knows the address for function M, but it does not have
access to the pages which contain the code for function M. These are only mapped into
domain B. Hence, when A calls method M an instruction fault will occur since the
code for M is not mapped into context A. The fault causes an event to be raised in the
Java Nucleus. The event handler for this fault is passed two arguments: the fault
address (i.e., method address) and the fault location (i.e., call instruction). Using the
method address, the Java Nucleus determines the method information which contains
the destination domain and the access control information. Paramecium’s event inter-
face is used to determine the caller domain. Based on this information, an access deci-
sion is made. If access is denied, a security exception is raised in the caller domain.

Using the fact that method information is static and that domain information is
static for code that is not shared, we can improve the access control check process.
Rather than looking up this information, the Java Nucleus stores a pointer to it in the
native code segment of the calling domain. The information can then be accessed
quickly using a fixed offset and fault location parameter. Method calls are achieved
through special trampoline code that embeds these two values. More precisely, the call
trampoline code fragment in context A for calling method M appears as (in SPARC
[Sun Microsystems Inc., 1992] assembly):

call M ! call method M
mov %g0, %i0 ! nil object argument

b,a next_instr ! branch over
.long <caller domain> ! JNucleus caller domain pointer
.long <method info> ! JNucleus method info pointer

next_instr:

The information stored in the caller domain must be protected from tampering.
This is achieved by mapping all executable native code as execute only; only the Java
Nucleus has full access to it.

When access is granted for an XMI, an event is associated with the method if one
is not already present. Then the arguments are copied into the registers and onto the
event handler stack as dictated by the calling frame convention. No additional
marshaling of the parameters is required. Both value and reference parameters are
passed unchanged. Using the method’s type signature to identify reference parameters,

140 Run Time Systems CHAPTER 5

we mark data references as exported roots (i.e., garbage collection roots). Instance data
is mapped on demand as described in the next section. Invoking a method on an object
reference causes an XMI to the method implementation in the object owner’s protec-
tion domain.

Virtual method invocations, where a set of specific targets is known at compile-
time but the actual target only at runtime, require a lookup in a switch table. The desti-
nations in this table refer to call trampolines rather than the actual method address.
Each call trampoline consists of the code fragment described above.

Using migratory threads, an XMI extends the invocation chain of the executing
thread into another protection domain. Before raising the event to invoke the method,
the Java Nucleus adjusts the thread priority according to the priority of the destination
protection domain. The original thread priority is restored on the method return. Set-
ting the thread priority enables the Java Nucleus to control the CPU resources used by
the destination protection domain.

The Java Nucleus requires an explicit event invoke to call the method rather than
causing an instruction fault which is handled by the destination domain. The reason for
this is that it is not possible in Paramecium to associate a specific stack (i.e., the one
holding the arguments) with a fault event handler. Hence the event has to be invoked
directly. This influences the performance of the system depending on whether the Java
Nucleus is instantiated in a separate address space or as a module in the kernel. When
the Java Nucleus is in a separate process, an extra system call is necessary to enter the
kernel. The invoked routine is called directly when the Java Nucleus is instantiated as
a kernel module.

Local method invocations use the same method call trampoline as the one out-
lined above, except that the Java Nucleus does not intervene. This is because the
method address is available locally and does not generate a fault. The uniform trampo-
line allows the Java Nucleus to share class implementations among multiple protection
domains by mapping them in. For example, simple classes like the java.lang.String or
java.lang.Long can be shared by all protection domains without security implications.
Sharing class implementations reduces memory use and improves performance by
eliminating XMIs. XMIs made from a shared class do not have their caller domain set,
since there can be many caller domains, and require the Java Nucleus to use the system
authentication interface to determine the caller.

Data Sharing
Passing parameters, as part of a cross domain method invocation (XMI), requires

simply copying them by value and marking the reference variables as exported roots.
That is, the parameters are copied by value from the caller to the callee stack without
dereferencing any of the references. Subsequent accesses to these references will cause
a protection fault unless the reference is already mapped in. The Java Nucleus, which
handles the access fault, will determine whether the faulting domain is allowed access

SECTION 5.2 Secure Java Run Time System 141

to the variable referenced. If allowed, it will share the page on which the variable is
located.

Sharing memory on a page basis traditionally leads to false sharing or fragmenta-
tion. Both are clearly undesirable. False sharing occurs when a variable on a page is
mapped into two address spaces and the same page contains other unrelated variables.
This clearly violates the confinement guarantee of the protection domain. Allocating
each variable on a separate page results in fragmentation with large amounts of unused
physical memory. To share data efficiently between different address spaces, we use
the garbage collector to reallocate the data at runtime. This prevents false sharing and
fragmentation.

Consider Figure 5.12 which shows the remapping process to share a variable a
between the mail context and the executable content context. In order to relocate this
variable we use the garbage collector to update all the references. To prevent race con-
ditions the threads within or entering the contexts that hold a reference to a are
suspended (step 1). Then the data, a, is copied onto a new memory page (or pages
depending on its size) and referred to as a ′. The other data on the page is not copied, so
there is no risk of false sharing. The garbage collector is then used to update all refer-
ences that point to a into references that point to a ′ (step 2). The page holding a ′ is
then mapped into the other context (step 3) Finally, the threads are resumed, and new
threads are allowed to enter the unblocked protection domains (step 4). The garbage
collector will eventually delete a since it does not have any references to it.

���������
���������
���������
���������
���������
���������
���������
���������

���������
���������
���������
���������
���������
���������
���������
���������

a’ a’

a b c

Mail Context

4 GB

0

Executable content context

2: relocate1: suspend threads

4: resume threads

3: map in other context

not mapped

Figure 5.12. Data remapping between different protection domains. All pro-

tection domains share the same address space but have different mapping and

protection views.

142 Run Time Systems CHAPTER 5

Other variables that are shared between the same protection domains are tagged
onto the already shared pages to reduce memory fragmentation. The process outlined
above can be applied recursively. That is, when a third protection domain needs access
to a shared variable the variable is reallocated on a page that is shared between the
three domains.

In order for the garbage collector (see below) to update the cell references it has
to be exact. That is, it must keep track of the cell types and of references to each cell to
distinguish valid pointers from random integer values. The updating itself can either be
done by a full walk over all the in-use memory cells or by arranging each cell to keep
track of the objects that reference it. The overhead of the relocation is amortized over
subsequent uses.

Besides remapping dynamic memory, the mechanism can also be used to remap
static (or class) data. Absolute data memory references can occur within the native
code generated by the just-in-time compiler. Rather than updating the data locations
embedded in the native code on each data relocation, the just-in-time compiler gen-
erates an extra indirection to a placeholder holding the actual reference. This place-
holder is registered with the garbage collector as a reference location.

Data remapping is used not only to share references passed as parameters over an
XMI, but also to share object instance data between sub and superclasses in different
protection domains. Normally, object instances reside in the protection domain in
which their class was loaded. Method invocations on that object from different protec-
tion domains are turned into XMIs. In the case of an extended (i.e., inherited) class the
object instance state is shared between the two protection domains. This allows the sub
and superclass methods to directly access the instance state rather than capturing all
these accesses and turning them into XMIs. To accomplish this our JVM uses the
memory remapping technique outlined above.

The decision to share object instance state is made at the construction time of the
object. Construction involves calling the constructor for the class followed by the con-
structors for its parent classes. When the parent class is in a different protection
domain the constructor invocation is turned into an XMI. The Java Nucleus performs
the normal access control checks as for any other XMI from a different protection
domain. The object instance state, that is passed implicitly as the first argument to the
constructor call, is marked as an exportable root. The mechanisms involved in marking
memory as an exportable root are discussed in the next section.

Java uses visibility rules (i.e., public and protected) to control access to parts of
the object instance state. Enforcing these rules through memory protection is straight-
forward. Each object’s instance state is partitioned into a shared and nonshared part.
Only the shared state can be mapped.

An example of state sharing between super and subclass is shown in Figure 5.13.
Here the class BitMap and all its instances reside in protection domain A. Protection
domain B contains all the instances of the class Draw. This class is an extension of the

SECTION 5.2 Secure Java Run Time System 143

class BitMap { // Domain A
private static int N = 8, M = 8;
protected byte bitmap[][];

protected BitMap() {
bitmap = new byte[N/8][M];

}

protected void set(int x, int y) {
bitmap[x/8][y] |= 1<<(x%8);

}
}

class Draw extends BitMap { // Domain B
public void point(int x, int y) {

super.set(x, y);
}

public void box(int x1, int y1,
int x2, int y2) {

for (int x = x1; x < x2; x++)
for (int y = y1; y < y2; y++)

bitmap[x/8][y] |= 1<<(x%8);
}

}

Figure 5.13. Simple box drawing class.

BitMap class which resides in a different protection domain. When a new instance of
Draw is created the Draw constructor is called to initialize the class. In this case the
constructor for Draw is empty and the constructor for the superclass BitMap is invoked.
Invoking this constructor will cause a transfer into the Java Nucleus.

The Java Nucleus first checks the access permission for domain B to invoke the
BitMap constructor in domain A. If granted, the object pointer is marked as an export-
able root and passed as the first implicit parameter. Possible other arguments are
copied as part of the XMI mechanism and the remote invocation is performed (see Fig-
ure 5.14). The BitMap constructor then assigns a new array to the bitmap field in the
Draw object. Since the assignment is the first dereference for the object it will be
remapped into domain A (see Figure 5.15).

When the creator of the Draw object calls box, see Figure 5.16, and dereferences
bitmap it will be remapped into domain B (because the array is reachable from an
exported root cell to domain A; see next section). Further calls to box do not require
this remapping. A call to point results in an XMI to domain A where the superclass
implementation resides. Since the Draw object was already remapped by the construc-
tor it is does not require any remapping.

144 Run Time Systems CHAPTER 5

4 GB

0

Domainn BDomain A

Instance Draw object

Code BitMap class

Code Draw class

BitMap.<constructor>

Call

Figure 5.14. An instance of Draw has been created and the constructor for the

super class BitMap is called. At this point the object instance state is only

available to domain B.

4 GB

0

Domainn BDomain A

Instance Draw object

Code BitMap class

Instance Draw object

Object bitmap matrix

Code Draw class

Remap object

Figure 5.15. The BitMap constructor dereferences the object pointer, which

causes the object to be mapped into domain B. At this point the object

instance state is shared between domain A and B. The bitmap matrix that is

allocated by the constructor is still local to domain A.

Whenever a reference is shared among address spaces, all references that are
reachable from it are also shared and will be mapped on demand when referred to.

SECTION 5.2 Secure Java Run Time System 145

4 GB

0

Domainn BDomain A

Instance Draw object

Code BitMap class

Instance Draw object

Object bitmap matrix Object bitmap matrix

Code Draw class

Remap object

Figure 5.16. The Draw.box method is invoked and it dereferences the bitmap

matrix. This will cause the bitmap matrix to be mapped into domain B.

This provides full transparency for Java programs which assume that a reference can be
passed among all its classes. A potential problem with on-demand remapping is that it
dilutes the programmers’ notion of what is being shared over the life-time of a refer-
ence. This might obscure the security of the system. To strengthen the security, an
implementation might decide not to support remapping of objects at all or provide a
proactive form of instance state sharing. Not supporting instance state sharing prevents
programs that use the object oriented programming model from being separated into
multiple protection domains. For example, it precludes the isolation and sharing of the
AWT package in a separate protection domain.

The implementation has to be conservative with respect to references passed as
arguments to cross domain method invocations and has to unmap them whenever possi-
ble to restrict their shared access. Rather than unmapping at the invocation return time,
which would incur a high call overhead, we defer this until garbage collection time.
The garbage collector is aware of shared pages and determines whether they are reach-
able in the context they are mapped in. If they are unreachable, rather than removing
all the bookkeeping information the page is marked invalid so it can be remapped
quickly when it is used again.

Garbage Collection
Java uses garbage collection [Jones and Lins, 1996] to reclaim unused dynamic

memory. Garbage collection, also known as automatic storage reclamation, is a tech-
nique whereby the run-time system determines whether memory is no longer used and
can be reclaimed for new allocations. The main advantage of garbage collection is that
it simplifies storage allocation for the programmer and makes certain programming

146 Run Time Systems CHAPTER 5

errors, such as dangling pointers, impossible. The disadvantage is typically the
increased memory usage and, to a lesser extent, the cost of performing the actual gar-
bage collection.

A number of different garbage collection techniques exist. The two systems we
refer to in this section are traced garbage collectors and conservative garbage collec-
tors. A traced garbage collector organizes memory into many different cells which are
the basic unit of dynamic storage. These cells are allocated and contain data structures
ranging from single integers, strings, arrays to complete records. The garbage collector
system knows about the layout of a cell and more specifically it knows where the
pointers to other cells are. Each time the collector needs to find unused memory it will
start from a set of cells, called the root set, and traverses each pointer in a cell to other
cells and marks the ones it has seen. Eventually, the collector will find no unmarked
cells that are reachable from the given root set. At that point all the marked cells are
still in use and the unmarked ones are free to be reclaimed. This collection process gets
more complicated, as described below, when you take into account that the mutators,
the threads allocating memory and modifying it, run concurrently with the garbage col-
lector and that the collector may run incrementally.

A conservative garbage collector uses a very different garbage collection pro-
cess. It too allocates memory in the form of cells and keeps a list of allocated cells. At
garbage collection time it traverses the content of each cell and any value in it that
corresponds to a valid cell address is taken to be a reference to that cell and is therefore
marked. This may well includes random values and the collector might mark cells as
in-use while they are in fact not used. The advantage of this algorithm is that it does
not require the garbage collection system to understand the layout of a cell.

Garbage collection is an integral part of the Java language and for our design we
used a noncompacting incremental traced garbage collector that is part of the Java
Nucleus. Our garbage collector is responsible for collecting memory in all the address
spaces the Java Nucleus manages. A centralized garbage collector has the advantage
that it is easier to share memory between different protection domains and to enforce
central access and resource control. An incremental garbage collector has better real
time properties than non-incremental collectors.

More precisely, the garbage collector for our secure Java machine must have the
following properties:

1. Collect memory over multiple protection domains and protect the bookkeep-
ing information from the potentially hostile domains.

2. Relocate data items at runtime. This property is necessary for sharing data
across protection domains. Hence, we use an exact garbage collector rather
than a conservative collector [Boehm and Weiser, 1988].

3. Determine whether a reference is reachable from an exported root. Only
those variables that can be obtained via a reference passed as an XMI argu-
ment or instance state are shared.

SECTION 5.2 Secure Java Run Time System 147

4. Maintain, per protection domain, multiple memory pools with different access
attributes. These are execute only, read-only, and read-write pools that con-
tain native code, read-only and read-write data segments respectively.

5. Enforce resource control limitations per protection domain.

As discussed in the previous section all protection domains share the same virtual
address map albeit with different protection views of it. The Java Nucleus protection
domain, which contains the garbage collector, has full read-write access to all available
memory. Hence the ability to collect memory over different domains is confined to the
Java Nucleus.

A key feature of our garbage collector is that it integrates collection and protec-
tion. Classical tracing garbage collection algorithms assume a single address space in
which all memory cells have the same access rights. A cell is a typed unit of storage
which may be as small as an integer or contain more complex data structure definitions.
For example, a cell may contain pointers for other cells. In our system cells have dif-
ferent access rights depending on the protection domain accessing it and cells can be
shared among multiple domains. Although access control is enforced through the
memory protection hardware, it is the garbage collector that has to create and destroy
the memory mappings.

The algorithm we use (see the pseudo-code in Figure 5.17) is an extension of a
classic mark-sweep algorithm which runs concurrently with the mutators (the threads
modifying the data) [Dijkstra et al., 1978]. The original algorithm uses a tricolor
abstraction in which all cells are painted with one of the following colors: black indi-
cates that the cell and its immediate descendents have been visited and are in use; grey
indicates that the cell has been visited but not all of its descendents, or that its connec-
tivity to the graph has changed; and white indicates untraceable (i.e., free) cells. The
garbage collection phase starts with all cells colored white and terminates when all
traceable cells have been painted black. The remaining white cells are free and can be
reclaimed.

To extend this algorithm to multiple protection domains we associate with each
cell its owner domain and an export set. An export set denotes to which domains the
cell has been properly exported. Garbage collection is performed on one protection
domain at a time, each keeping its own color status to assist the marking phase. The
marking phase starts by coloring all the root and exported root cells for that domain as
grey. It then continues to examine all cells within that domain. If one of them is grey
it is painted black and all its children are marked grey until there are no grey cells left.
After the marking phase, all cells that are used by that domain are painted black. The
virtual pages belonging to all the unused white cells are unmapped for that domain.
When the cell is no longer used in any domain it is marked free and its storage space is
reclaimed. Note that the algorithm in Figure 5.17 is a simplification of the actual
implementation, many improvements (such as [Doligez and Gonthier, 1994; Kung and

148 Run Time Systems CHAPTER 5

COLLECT():
for (;;) {

for (d in Domains)
MARK(d)

SWEEP();
}

MARK(d: Domain): // marker phase
color[d, (exported) root set] = grey
do {
dirty = false
for (c in Cells) {

if (color[d, c] == grey) {
color[d, c] = black
for (h in children[c]) {
color[d,h] = grey
if (EXPORTABLE(c, h))
export[d,h] |= export[d,c]

}
dirty = true

}
}

} while (dirty)

SWEEP(): // sweeper phase
for (c in Cells) {
used = false
for (d in Domains) {

if (color[d, c] == white) {
export[d, c] = nil
UNMAP(d, c)

} else
used = true

color[d, c] = white
}
if (used == false)
DELETE(c)

}

ASSIGN(a, c): // pointer assignment
*a = c
d = current domain
export[d,c] |= export[d,a]
if (color[d, c] == white)
color[d, c] = grey

EXPORT(d: Domain, c: Cell): // export object
color[d,c] = grey
export[d,c] |= owner(c)
export[owner(c),c] |= d

Figure 5.17. Multiple protection domain garbage collection.

SECTION 5.2 Secure Java Run Time System 149

Song, 1977; Steele, 1975]) are possible. A correctness proof of the algorithm follows
from Dijkstra’s paper [Dijkstra et al., 1978].

Cells are shared between other protection domains by using the remapping tech-
nique described in the previous section. In order to determine whether a protection
domain d has access to a cell c, the Java Nucleus has to examine the following three
cases: The trivial case is where the owner of c is d. In this case the cell is already
mapped into domain d. In the second case the owner of c has explicitly given access to
d as part of an XMI parameter or instance state sharing or is directly reachable from
such an exported root. This is reflected in the export information kept by the owner of
c. Domain d has also access to cell c if there exists a transitive closure from some
exported root r owned by the owner of c to some domain z. From this domain z there
must exist an explicit assignment which resulted in c being inserted into a data struc-
ture owned by d or an XMI from the domains z to d passing cell c as an argument. In
the case of an assignment the data structure is reachable from some other previously
exported root passed by d to z. To maintain this export relationship each protection
domain maintains a private copy of the cell export set. This set, usually nil and only
needed for shared memory cells, reflects the protection domain’s view of who can
access the cell. A cell’s export set is updated on each XMI (i.e., export) or assignment
as shown in Figure 5.17.

Some data structures, for example, exist prior to an XMI passing a reference to it.
The export set information for these data structures is updated by the marker phase of
the garbage collector. It advances the export set information from a parent to all its
siblings taking the previously mentioned export constraints into account.

Maintaining an export set per domain is necessary to prevent forgeries. Consider
a simpler design in which the marker phase advances the export set information to all
siblings of a cell. This allows the following attack where an adversary forges a refer-
ence to an object in domain d and then invokes an XMI to d passing one of its data
structures which embeds the forged pointer. The marker phase would then eventually
mark the cell pointed to by the forged reference as exported to d. By maintaining for
each cell a per protection domain export set forged pointers are impossible.

Another reason for keeping a per protection domain export set is to reduce the
cost of a pointer assignment operation. Storing the export set in the Java Nucleus
would require an expensive cross protection domain call for each pointer assignment,
by keeping it in user space this can be eliminated. Besides, the export set is not the
only field that needs to be updated. In the classic Dijkstra algorithm the cell’s color
information needs to be changed to grey on an assignment (see Figure 5.17). Both
these fields are therefore kept in user space.

The cell bookkeeping information consists of three parts (see Figure 5.18). The
public part contains the cell contents and its per domain color and export information.
These parts are mapped into the user address space, where the color and export infor-
mation is stored in the per domain private memory segment (see above). The nucleus
part is only visible to the Java Nucleus. A page contains one or more cells where for

150 Run Time Systems CHAPTER 5

each cell the contents is preceded by a header pointing to the public information. The
private information is obtained by hashing the page frame number to get the per page
information which contains the private cell data. The private cell data contains pointers
to the public data for all protection domains that share this cell. When a cell is shared
between two or more protection domains the pointer in the header of the cell refers to
public cell information stored in the private domain specific portion of the virtual
address space. The underlying physical pages in this space are different and private for
each protection domain.

Memory cell

JNucleus info

....
....

Java Nucleus cell dataPer domain cell data

Cell payload

Cell reference

Color

Export set

Cell reference

Ower

Private info

Figure 5.18. Garbage collection cell data structure. A cell consists of the

actual, possibly shared, payload and a separate private per domain structure

describing the current color and export set. The cell ownership information is

kept separately by the Java Nucleus.

To amortize the cost of garbage collection, our implementation stores one or
more cells per physical memory page. When all the cells are free, the page is added to
the free list. As stated earlier, each protection domain has three memory pools: an
execute-only pool, a read-only pool, and a read-write pool. Cells are allocated from
these pools depending on whether they contain executable code, constant data, or vola-
tile data. When memory becomes really tight, pages are taken from their free lists,
their virtual pages are unmapped, and their physical pages returned to the system physi-
cal page pool. This allows them to be re-used for other domains and pools.

Exposing the color and export set fields requires the garbage collector to be very
careful in handling these user accessible data items. It does not, however, reduce the
security of our system. The user application can, at most, cause the marker phase to

SECTION 5.2 Secure Java Run Time System 151

loop forever, cause its own cells that are still in use to be deallocated, or hang on to
shared pages. These problems can be addressed by bounding the marker loop phase by
the number of in-use cells. Deleting cells that are in use will cause the program to fail
eventually, and hanging on to shared pages is not different from the program holding
on to the reference.

When access to a cell is revoked, for example as a result of an XMI return, its
color is marked grey and it is removed from the receiving domain’s export set. This
will cause the garbage collector to reexamine the cell and unmap it during the sweep
phase when there are no references to it from that particular domain.

To relocate a reference, the Java Nucleus forces the garbage collector to start a
mark phase and update the appropriate references. Since the garbage collector is exact,
it only updates actual object references. An alternative design for relocation is to add
an extra indirection for all data accesses. This indirection eliminates the need for expli-
cit pointer updates. Relocating a pointer consists of updating its entry in the table.
This design, however, has the disadvantage that it imposes an additional cost on every
data access rather than the less frequent pointer assignment operation and prohibits
aggressive pointer optimizations by smart compilers.

The amount of memory per protection domain is constrained. When the amount
of assigned memory is exhausted an appropriate exception is generated. This prevents
protection domains from starving other domains of memory.

5.2.5. Prototype Implementation
Our prototype implementation is based on Kaffe, a freely available JVM imple-

mentation [Transvirtual Technologies Inc., 1998]. We used its class library implemen-
tation and JIT compiler and we reimplemented the IPC, garbage collector and thread
subsystems. Our prototype implements multiple protection domains and data sharing.
For convenience, the Java Nucleus contains the JIT compiler and all the native class
implementations. It does not yet provide support for text sharing of class implementa-
tions and has a simplified security policy description language. Currently, the security
policy defines protection domains by explicitly enumerating the classes that comprise it
and the access permissions for each individual method. The current garbage collector
is not exact for the evaluation stack and uses a weaker form to propagate export set
information.

The trusted computing base (TCB) of our system is formed by the Paramecium
kernel, the Java Nucleus, and the hardware the system is running on. The size of our
Paramecium kernel is about 10,000 lines of commented header files, and
C++/assembler code. The current Java Nucleus is about 27,200 lines of commented
header files and C++ code. This includes the JIT component, threads, and much of the
Java run-time support. The motivation for placing the JIT in the TCB is that it enables
certain performance optimizations which we described in Section 5.2.4. In a system
that supports text sharing the Java Nucleus can be reduced considerably.

152 Run Time Systems CHAPTER 5

A typical application of our JVM is that of a web server written in Java that sup-
ports servlets, like W3C’s JigSaw. Servlets are Java applets that run on the web server
and extend the functionality of the server. They are activated in response to requests
from a web browser and act mainly as a replacement for CGI scripts. Servlets run on
behalf of a remote client and can be loaded from a remote location. They should there-
fore be kept isolated from the rest of the web server.

Our test servlet is the SnoopServlet that is part of the Sun’s Java servlet develop-
ment kit [SunSoft, 1999]. This servlet inherits from a superclass HttpServlet which
provides a framework for handling HTTP requests and turning them into servlet
method calls. The SnoopServlet implements the GET method by returning a web page
containing a description of the browser capabilities. A simple web server implements
the HttpServlet superclass. For our test the web server and all class libraries are loaded
in protection domain WS, the servlet implementation is confined to Servlet.

The WS domain makes 2 calls into the Servlet domain, one to the constructor for
SnoopServlet object and one to the doGet method implementing HTTP GET. This
method has two arguments, the servlet request and reply objects. Invoking methods on
these causes XMIs back into the WS domain. In this test a total of 217 XMIs occurred.
Many of these calls are to runtime classes such as java/io/PrintWriter (62) and java.

lang.StringBuffer (101). In an implementation that supports text sharing these calls
would be local procedure calls and only 33 calls would require an actual XMI to the
web server. Many of these XMIs are the result of queries from the servlet to the
browser.

The number of objects that are shared and therefore relocated between the WS

and Servlet domains are 47. Most of the relocated objects are static strings (45) which
are used as arguments to print the browser information. These too can be eliminated by
using text sharing since the underlying implementation of print uses a single buffer. In
that case only a single buffer needs to be relocated. The remaining relocated objects
are the result of the HttpServlet class keeping state information.

5.3. Discussion and Comparison
Because of the distinct nature of the two applications presented in this chapter we

discuss each of them in turn. First the extensible run-time system for Orca followed by
a discussion on our secure Java virtual machine.

Extensible Run Time System for Orca
Orca is a language based distributed shared memory system (DSM) for parallel

and distributed programming [Bal, 1989]. Orca differs from other DSM systems
[Ahuja et al., 1986; Bershad et al., 1993; Johnson et al., 1995; Keleher et al., 1994] in
that it encapsulates shared memory into shared data objects. The language semantics
guarantee sequential consistency on shared object updates and it is up to the language
run-time system to implement this. The current run-time systems do this by providing
an efficient object state replication strategy and totally ordered group communication.

SECTION 5.3 Discussion and Comparison 153

In our Orca run-time system (FlexRTS) we wanted to be as flexible as possible
and used the same approach as we did for the kernel. That is, FlexRTS consists of a
small run-time layer and all components, such as a thread system, network protocols,
device drivers, specific shared object implementations, etc., are loaded dynamically
and on-demand using the extension mechanisms described in Chapter 2. This means
that these modules are more amenable to change and experimentation. In addition to
the standard modules, the run-time system also has the ability to use specific imple-
mentations for individual shared-objects. This enables many application specific
optimizations. For example, the shared object could be implemented as a kernel exten-
sion, or it could be used to provide a shared-object implementation with different ord-
ering and reliability semantics. Especially the latter might improve the performance of
TSP, for example, since its bounds updates require no ordering and very little reliability
other than fairness.

The main focus of our FlexRTS system was to show how to construct a flexible
framework for a run-time system using the same design principles as for the kernel. As
an example we used Orca and showed how to integrate the extension mechanisms into
a run-time system and we discussed some alternative implementations for some
modules. One of these modules is a group communication protocol which provides
efficient shared object updates by off-loading the sequencer and using active messages
[Von Eicken et al., 1992]. The group communication protocol itself is similar to
Kaashoek’s PB protocol [Kaashoek, 1992] except that the recovery state is shared
among all members instead of the sequencer. This off-loads the sequencer and allows a
higher utilization. Experiments showed that this protocol performed quite well in our
experiments but it is expected that the performance degrades under a heavy load with
many clients. That is, under heavy load there is a higher probability of packets getting
lost and each lost packet results in a group multicast interrupting each member.

Secure Java Virtual Machine
Our system is the first to use hardware fault isolation on commodity components

to supplement language protection by tightly integrating the operating system and
language run-time system. In our design we concentrated on Java, but our techniques
are applicable to other languages as well (e.g., SmallTalk [Goldberg and Robson, 1983]
and Modula3 [Nelson, 1991]) provided they use garbage collection, have well defined
interfaces, and distinguishable units of protection. A number of systems provide
hardware fault isolation by dividing the program into multiple processes and use a
proxy based system like RMI or CORBA, or a shared memory segment for communi-
cation between them. Examples of these systems are the J-Kernel [Hawblitzel et al.,
1998] and cJVM [Aridor et al., 1999]. This approach has a number of drawbacks that
are not found in our system:

1. Most proxy mechanisms serialize the data in order to copy it between dif-
ferent protection domains. Serialization provides copy semantics which are

154 Run Time Systems CHAPTER 5

incompatible with the shared memory semantics required by the Java
language.

2. The overhead involved in marshaling and unmarshaling the data is significant
compared to on demand sharing of data.

3. Proxy techniques are based on interfaces and are not suited for other commun-
ication mechanisms such as instance state sharing. The latter is important for
object oriented languages.

4. Proxy mechanisms usually require stub generators to generate proxy stubs and
marshaling code. These stub generators use interface definitions that are
defined outside the language or require language modifications to accommo-
date them.

5. It is harder to enforce centralized resource control within the system because
proxy mechanisms encourage many independent instances of the virtual
machine.

The work by Back [Back et al., 1998] and Bernadat [Bernadat et al., 1998]
focuses on the resource control aspects of competing Java applets on a single virtual
machine. Their work is integrated into a JVM implementation while our method of
resource control is at an operating system level. For their work they must trust the
bytecode verifier.

The security provided by our JVM consists of separate hardware protection
domains, controlled access between them, and system resource usage control. An
important goal of our work was to maintain transparency with respect to Java pro-
grams. Our system does not, however, eliminate covert channels or solve the capabil-
ity confinement and revocation problem.

The confinement and revocation problem are inherent to the Java language. A
reference can be passed from one domain to another and revocation is entirely volun-
tary. These problems can be solved in a rather straightforward manner, but they do
violate the transparency requirement. For example, confinement can be enforced by
having the Java Nucleus prohibit the passing of references to cells for which the calling
domain is not the owner. This could be further refined by requiring that the cell owner
should have permission to call the remote method directly when the cell is passed to
another domain. Alternatively, the owner could mark the cells it is willing to share or
maintain exception lists for specific domains. Revocation is nothing more than unmap-
ping the cell at hand.

In the design of our JVM we have been very careful to delay expensive opera-
tions until they are needed. An example of this is the on-demand remapping of refer-
ence values, since most of the time reference variables are never dereferenced.
Another goal was to avoid cross-protection domain switches to the Java Nucleus. The
most prominent example of this is pointer assignment which is a trade-off between

SECTION 5.3 Discussion and Comparison 155

memory space and security. By maintaining extra, per protection domain, garbage col-
lector state we perform pointer assignments within the same context, thereby eliminat-
ing a large number of cross domain calls due to common pointer assignment opera-
tions. The amount of state required can be reduced by having the compiler produce
hints about the potential sharing opportunities of a variable.

In our current JVM design, resources are allocated and controlled on a per pro-
tection domain basis, as in an operating system. While we think this is an adequate
protection model, it might prove to be too coarse grained for some applications and
might require techniques as suggested by Back [Back et al., 1998].

The current prototype implementation shows that it is feasible to build a JVM
with hardware separation whose Java XMI overhead is small. Many more optimiza-
tions, as described in this paper, are possible but have not been implemented yet. Most
notable is the lack of instruction sharing which can improve the performance consider-
ably since it eliminates the need for XMIs. When these additional optimizations are
factored in, we believe that a hardware-assisted JVM compares quite well to JVM’s
using software fault isolation.

The security of our system depends on the correctness of the shared garbage col-
lector. Traditional JVMs rely on the bytecode verifier to ensure heap integrity and a
single protection domain garbage collector. Our garbage collector allocates memory
over multiple protection domains and cannot depend on the integrity of the heap. This
requires a very defensive garbage collector and careful analysis of all the attack
scenarios. In our design the garbage collector is very conservative with respect to
addresses it is given. Each address is checked against tables kept by the garbage col-
lector itself and the protection domain owning the object to prevent masquerading. The
instance state splitting according to the Java visibility rules prevents adversaries from
rewriting the contents of a shared object. Security sensitive instance state that is
shared, and therefore mutable, is considered a policy error or a programming error.

Separating the security policy from the mechanisms allows the enforcement of
many different security policies. Even though we restricted ourself to maintaining
transparency with respect to Java programs, stricter policies can be enforced. These
will break transparency, but provide higher security. An example of this is opaque
object reference sharing. Rather than passing a reference to shared object state, an
opaque reference is passed. This opaque reference can only be used to invoke methods;
the object state is not shared and can therefore not be inspected.

The garbage collector, and consequently run-time relocation, have a number of
interesting research questions associated with them that are not yet explored. For
example, the Java Nucleus is in a perfect position to make global cache optimization
decisions because it has an overall view of the data being shared and the XMIs passed
between domains. Assigning a direction to the data being shared would allow fine
grained control of the traversal of data. For example, a client can pass a list pointer to a
server applet which the server can dereference and traverse but the server can never
insert one of its own data structures into the list. The idea of restricting capabilities is

156 Run Time Systems CHAPTER 5

reminiscent of Shapiro’s diminish-grant model for which confinement has been proven
[Shapiro and Weber, 2000].

The Java Nucleus depends on user accessible low-level operating system func-
tionality that is currently only provided by extensible operating systems (e.g., Parame-
cium, OSKit [Ford et al., 1997], L4/LavaOS [Liedtke et al., 1997], ExOS [Engler et al.,
1995], and SPIN [Bershad et al., 1995b]). Implementing the Java Nucleus on a con-
ventional operating system would be considerably harder since the functionality listed
above is intertwined with hard coded abstractions that are not easily adapted.

Notes
Parts of the FlexRTS sections in this chapter were published in the proceedings of the
third ASCI Conference in 1997 [Van Doorn and Tanenbaum, 1997], and the group
communication ideas were published in the proceedings of the sixth SIGOPS Euro-
pean Workshop [Van Doorn and Tanenbaum, 1994]. Part of the secure Java virtual
machine section appeared in the proceedings of the 9th Usenix Security Symposium

[Van Doorn, 2000]. Part of this work has been filed as an IBM patent.

SECTION 5.3 Discussion and Comparison 157

6

Experimental Verification

In this chapter we study some of the quantative aspects of our extensible operat-
ing system to get an insight into the performance of our system. For this we ran experi-
ments on the real hardware and on our SPARC architecture simulator (see Section 1.6).
In this chapter we discuss the results. We are mostly interested in determining the per-
formance aspects of our extensible system, and how well microbenchmarks of primi-
tives predict the performance of programs that are build on them. That is, we want to
determine where time is spent in each part of our system and what fraction of it is due
to hardware overhead, extensible system overhead, and the overhead of our particular
implementation and whether a microbenchmark result from a lower level explains the
result from a microbenchmarks at a higher level.

For our experiments we picked one example from each of the three major sub-
systems described in this thesis: The extensible kernel, the thread package from the
system extensions chapter, and the secure Java virtual machine from the run-time sys-
tems chapter. These three examples form a complete application which runs on both
the hardware and the simulator and is, therefore, completely under our control. The
other applications described in this thesis depend on the network and are therefore less
deterministic.

In our opinion, in order to evaluate a system it is absolutely necessary to run
complete applications rather than microbenchmarks alone. Microbenchmarks tend to
give a distorted view of system because they measure a single operation without taking
into effect other operations. For example, the results of a system call microbenchmark
might give very good results because the system call code is optimized to prevent cache
conflicts. However, when running an application, the performance might not be as
advertised because of cache and translation lookaside buffer (TLB) conflicts. Of
course, microbenchmarks do give insights into the performance aspects of particular
system operations, which is why we discuss our microbenchmarks in Section 6.1. To
get a realistic view of a system, complete applications are required, such as our thread
system, whose performance aspects are analyzed in Section 6.2, and our secure Java

158

virtual machine, which is analyzed in Section 6.3. The main thread in all these sections
is that we try to determine how accurately the results from previous sections predict
performance.

6.1. Kernel Analysis
In this section we take a closer look at two different performance aspects of the

Paramecium kernel. These are the cost of interprocess communication (IPC) and the
cost of invocation chains. These were picked because IPC represents a traditional
measure for kernel performance and the invocation chain mechanism forms the basis of
the thread system that is discussed in the next section. To provide a sense of the com-
plexity of the kernel, we discuss the number of source code lines used to implement it
on a our experimentation platform, a Sun (SPARCClassic) workstation with a 50 MHz
MicroSPARC processor.

Interprocess Communication
To determine the cost of an IPC we constructed a microbenchmark that raises an

event and causes control to be transfered to the associated event handler. This handler
is a dummy routine that returns immediately to the caller. We measured the time it
took to raise the event, invoke the handler, and return to the caller. In Paramecium an
event handler may be located in any protection domain and the kernel. Given this flex-
ibility, it was useful to measure the time it took to raise an event from the kernel to a
user protection domain, from a user protection domain to the kernel, and from a user
domain to a different user domain. To establish a base line we also measured the time
it took to raise an event from the kernel to a handler also located in the kernel. In order
to raise an event, we generated a trap; this is fastest way to raise an event and it is a
commonly used mechanism to implement system calls. The benchmark program itself
consisted of two parts: a kernel extension and a user application. The application uses
the extension to benchmark user-to-kernel IPC. The results for all these benchmarks
are shown in Figure 6.1.

Kernel User

Kernel

Destination

UserSo
ur

ce

9.5

12.3 10.3

9.9

Figure 6.1. Measured control transfer latency (in µsec) for null IPCs (from

kernel-to-kernel, kernel-to-user, user-to-kernel, and user-to-user contexts).

SECTION 6.1 Kernel Analysis 159

Our experimentation methodology consisted of measuring the time it took to exe-
cute 1,000,000 operations and repeat each of these runs 10 times. The result of these
runs were used to determine the average running time per operation. At each run we
made sure that the cache and translation lookaside buffer (TLB) were hot ; this means
that the cache and TLB were preloaded with the virtual and physical address and the
instruction and data lines that are part of the experiment. The added benefit of a hot
cache and TLB is that they provide a well-defined initial state for the simulator.

As is clear from Figure 6.1, when raising an event from a user context it makes
little difference whether the handler for an event is located in the kernel or another user
context. This result is not too surprising, since the MicroSPARC has a tagged TLB and
a physical instruction and data cache. A tagged TLB acts as a cache for hardware
MMU context, virtual address and physical address associations. Whenever a virtual
address is resolved to a physical address, the TLB is consulted before traversing the
MMU data structures. Since the hardware context is part of the TLB associations,
there is no need to flush the TLB on a context switch. Likewise, the caches are indexed
on physical addresses rather than virtual addresses, so they also do not require flushing
on context switches.

The code sequence to transfer control from one context to another is identical in
all four cases (kernel-to-kernel, kernel-to-user, user-to-kernel, user-to-user), with the
exception that transfers to user space will disable the supervisor flag in the program
status register and transfers to kernel space will enable it. Despite the fact that the
transfer of control code path is exactly the same, a kernel-to-kernel transfer costs more
than a user-to-user transfer. This behavior is due to cache conflicts and will become
clear when we discuss sources for performance indeterminacy below.

Even though the performance of our basic system call mechanism is only 25% of
a Solaris 2.6 getpid call (a Paramecium null IPC is 9.5 µsec and a Solaris getpid is 37
µsec) running on the same hardware, the absolute numbers are not in the range of other
extensible systems and microkernels For example, Exokernel has a 1.4 µsecs null IPC
on a 50 MHz MIPS [Engler et al., 1995], and L4 achieves a 0.6 µsecs null IPC on a 200
MHz Pentium Pro [Liedtke et al., 1997]. To determine where the time is being spent,
we ran the kernel and microbenchmark on our simulator to obtain instruction traces.
For brevity we will only look at the instruction trace for the user-to-kernel IPC since it
most closely resembles a traditional system call and therefore compares well with other
operating systems.

In Figure 6.2 we have depicted the time line for a single null user-to-kernel IPC
with the number of instructions executed and their estimated cycle times. The number
of instruction execution cycles used by a RISC instruction depends on the type of
operation. Hence, we list the instruction count and instruction cycle count for each
simulation run. Typically, a memory operation takes more cycles than a simple register
move instruction. The cycle times in Figure 6.2 are an estimate of the real cycle times
based on the instruction timings in the architecture manual. They do not take into
account TLB and cache misses which can seriously impact the performance of memory

160 Experimental Verification CHAPTER 6

operations. These times are not specified in the architecture manual and are in fact
quite difficult to emulate because the depend on widely varying memory chip timings.
The impact of cache misses becomes clear when we add up the estimated cycle counts:
270 cycles at 50 MHz takes 5.4 µsec as compared to the real measurement of 9.5 µsec,
which is a 43% difference. Still, since memory operations have higher cycle time than
other operations, the estimated cycle times give a good impression of where the time is
being spent. The only way to obtain more accurate instruction cycle counts at this level
would be to use an in-circuit emulator (ICE).

The event invocation path, which is the code that handles the trap and transfers
control to the event handler, takes up 58% of the instructions and 59% of the cycles in
the entire null IPC path. Half of these cycles are spent in saving the contents of the
global registers to memory and in register window management. The former consist
purely of memory operations, the latter consist of only three memory operations. Most
of the register window code is used to determine whether exceptional cases exist that
require special processing. In our null IPC path none of these cases occur, but we still
have to check for them. The other parts of the event invocation code consist of finding
the event handler, maintaining the invocation chain, marking the handler as active,
creating a new call frame, setting the supervisor bit in the program status register,
switching MMU contexts, and returning from the trap which transfers control back to
the microbenchmark function. Setting the current MMU context takes little time, only
3 cycles, because the code is aware that the kernel is mapped into every protection
domain. Switching to a user context does require setting the proper MMU context
which adds a small number of cycles.

When control is transfered to the microbenchmark function, it immediately exe-
cutes a return instruction which returns to the event return trap. This is all part of the
call frame which was constructed as part of the event invocation.

The event return path, the code that handles the event return trap and transfers
control back to the event invoker, accounted for about 40% of the instructions and 38%
of the cycles of the entire null IPC path. Again, most of the time is spent restoring the
global registers from memory and in register window handling. Other operations that
are performed during an event return are: maintaining the invocation chain, freeing the
event handler, restoring the context, and clearing the supervisor bit. Two other opera-
tions which are of interest, are clearing the interrupt status and restoring the condition
codes. These are not necessary for the null IPC, but in the current implementation the
IPC return path and the interrupt return path share the same code.† Even though we are
returning to user space, there is no need to clear the registers since the event return
mechanism recognized that the register window used for the return is still owned by the
original owner.

� ���������������������������

†The current event invoke and return code is not optimal. The initial highly optimized code managed to
obtain a null IPC timing of 6.8 µsec, but the code became convoluted after adding more functionality.
After that no attempt was made to reoptimize.

SECTION 6.1 Kernel Analysis 161

invocation chain (3, 5)

trap preamble (6, 6)

save state (15, 37)

invocation chain (7, 10)

event handler (9, 10)

register window handling (2, 3)

create new call frame (3, 3)

register window handling (10, 11)

return from trap (4, 6)

free event handler (5, 6)

clear interrupt status (3, 4)

restore globals (15, 22)

return from trap (2, 4)

......

in
vo

ke
 e

ve
nt

re
tu

rn
 f

ro
m

 e
ve

nt

Kernel User

find handler(23, 34)

register window handling (34, 37)

set supervisor status (8, 8)

set current context (3, 3)

benchmark function return (3, 6)

trap preamble (4, 4)

register window handling (13, 14)

invocation chain (7, 8)

restore context (3, 4)

clear supervisor status (9, 9)

register window handling (12, 14)

restore condition code (9, 9)

trap (1,3)

Figure 6.2. Simulated instruction time line for a null user-to-kernel IPC. The

values in the parenthesis indicate the number of simulated instructions in an

instruction block and the estimated number of execution cycles.

162 Experimental Verification CHAPTER 6

The main reason why our event invocation and return mechanism reduces a sys-
tem call by 75% when compared to Solaris is that we aggressively reduced the number
of register window saves. On Solaris, all register windows are stored to memory at a
system call and one window is filled on a return, requiring further register window fill
traps by the user applications. In our case, only the global and some auxiliary registers
are stored. During an event we mask the register windows belonging to the user as
invalid, and these register windows are marked valid again, upon return from the event.

The only problem with the microbenchmarks results discussed above is that they
can be misleading. Microbenchmarks typically measure only one specific operation
under very controlled and confined circumstances. Typical applications, on the other
hand, run in a much more chaotic environment with lots of interactions with other
applications. As a result, applications rarely see the performance results obtained by
microbenchmarks. The reasons for this performance indeterminacy are:

� Register window behavior. Our null IPC microbenchmarks showed very good
results but, as became clear from the instruction trace, they did not have to
spill or fill any register windows. Most applications do require register win-
dow spill and fills which add a considerable performance overhead not indi-
cated by the microbenchmark.

� Cache behavior. A microbenchmark typically entirely fits into the instruction
and data caches. Applications tend to be much bigger and usually run con-
currently with other applications. Therefore the number of cache conflicts is
much higher for a normal application than for a microbenchmark. These con-
flicts result in frequent cache line reloads and add a considerable performance
penalty. This behavior is not captured by microbenchmarks.

� TLB behavior. Likewise, a TLB has a limited number of entries, 32 in our
case, and the TLB working set for a microbenchmark typically fits into these
entries. Again, normal applications are bigger and tend to use more kernel
services. This results in a bigger memory footprint which in turn requires
more TLB entries and therefore has a higher probability to trash the cache.
Microbenchmarks typically do not take TLB trashing into account.

The impact of these three performance parameters can be quite dramatic. To
investigate this we ran the IPC benchmark, but varied the calling depth by calling a
routine recursively before performing the actual IPC. To determine the base line for
this benchmark we ran the test without making the actual IPC. These base line results
are shown in Figure 6.3 where we measured the time it took to make a number of recur-
sive procedure calls to C++ functions. We ran this benchmark once as an extension in
the kernel and again as a user application. As is clear from the figure, the first 5 pro-
cedure calls have a small incremental cost which represents the function prologue and
epilogue that manages the call frame. However, beyond that point the register window
is full and requires overflow processing to free up a register window. The cost of these

SECTION 6.1 Kernel Analysis 163

adds up quickly. There is slight difference between register window overflows in the
kernel and user contexts. This is caused by clearing the new register window for user
applications to prevent the accidental leaking of sensitive information, such as resource
identifiers, from the kernel or between two user protection domains.

Latency

(in µsec)

Register window calling depth

0

5

10

15

0 1 2 3 4 5 6 7

.
.
.
.
.
.
.
.
.
.
.
..
.
.
.
.
.
.
.
.
.
.

kernel
. . . . user

Figure 6.3. Measured register window handling overhead (in µsec) for null

procedure calls made in the kernel and from a user application.

Shown in Figure 6.4 are the results for the IPC benchmark while varying the
register window calling depth. We used the benchmark to test kernel-to-kernel,
kernel-to-user, user-to-kernel, and user-to-user IPCs. The results for all these bench-
marks show a similar trend where the register window overhead increases dramatically
after four procedure calls. The reason for this is our register window handling code
requires an additional window to manage context transitions. The variations between
the different benchmarks are puzzling at first since they all execute essentially the same
instruction path. The main difference, however, are the locations of the stack and
benchmark functions which might cause TLB and cache conflicts. To test this
hypothesis we ran the IPC benchmark on our simulator to obtain an estimate for the
number of cache and TLB conflicts. We limited our simulator runs to user-to-kernel
and kernel-to-kernel IPCs since they represent the best and worst IPC benchmark tim-
ings, respectively.

To estimate the number of cache conflicts we modified our simulator to generate
instruction and data memory reference and used them to determine the number of cache
conflicts. This simulation is quite accurate for two reasons: It uses the same kernel and
microbenchmark binaries that are used for obtaining the measurements, and the
memory used by them is allocated at exactly the same addresses as on the real
hardware. Our experimental platform, a MicroSPARC, has a 2 KB data cache and
4 KB instruction cache. Each cache contains 256 cache lines, where the data cache
lines are 8 bytes long and instruction cache lines are 16 bytes long. Both caches are

164 Experimental Verification CHAPTER 6

Latency

(in µsec)

Register window calling depth

0

5

10

15

20

25

30

0 1 2 3 4 5 6 7

.
kernel-to-kernel
kernel-to-user

. . . . user-to-kernel
user-to-user

Figure 6.4. Measured control transfer latency (in µsec) for null IPCs depend-

ing on register window (from kernel-to-kernel, kernel-to-user, user-to-kernel,

and user-to-user contexts).

direct mapped. When discussing cache behavior, we either use the absolute number of
cache hits and misses or the hit rate which is traditionally defined as [Hennessy et al.,
1996]:

hit rate =
(hits+misses)

100 hits
� ��������������������� %

In Figure 6.5 we show the simulated cache hits and misses for the instruction
cache (i-cache) and data cache (d-cache) for user-to-kernel IPCs. We simulated a hot
cache, wherein the cache was preloaded with the addresses from a previous run, since
that most closely resembles the environment in which our benchmark program was run.
To show the effect of register window handling we varied the calling depth. Our simu-
lated cache traces do account for the distortions caused by the clock interrupt, the sys-
tem watchdog timer, or by the code around the IPC path to keep the statistics. The
results can therefore only be used as a performance projection.

As is clear from Figure 6.5, the cache hit rate is quite good for user-to-kernel
IPCs. The i-cache hit rate ranges from 99% to 97.7% and the d-cache hit rate ranges
from 95.2% to 93.7%. The slight decrease in the hit rate is caused by executing addi-
tional instructions to handle register windows and saving the windows to memory.

As became clear from Figure 6.4 there is a slight difference in performance
between kernel-to-kernel and user-to-kernel IPCs. When we look at the instruction and
data cache misses in Figure 6.6 for kernel-to-kernel and user-to-kernel IPCs it becomes
clear that this effect can be partially explained by the higher number of cache misses
for a kernel to kernel IPC.

SECTION 6.1 Kernel Analysis 165

-0

200

400

600

Register window calling depth
0 1 2 3 4 5 6 7

.

i-cache misses
i-cache hits

. . . . d-cache misses
d-cache hits

Figure 6.5. Simulated hot instruction and data cache hits and misses for a sin-

gle null IPC from user-to-kernel while varying the calling depth.

0 1 2 3 4 5 6 7

Kernel i−cache misses

Kernel d−cache misses

User i−cache misses

User d−cache misses

Figure 6.6. Simulated hot instruction and data cache misses for a single null

IPC from user-to-kernel and kernel-to-kernel while varying the calling depth.

What is mostly apparent from Figure 6.6 is that the cache behavior is quite erratic
even for these small benchmarks running with a hot cache. This is also supported by
the fact that the benchmarks gave quite different results when changes were made to
the benchmark or the kernel. These could vary as much as 1.4 µsec for the same null
IPC benchmark. Because small benchmarks already exhibit such random performance
behavior caused by instruction and data cache misses the usefulness of their results is

166 Experimental Verification CHAPTER 6

questionable. Granted, the cache in our experimental platform exacerbates the problem
of cache conflicts since it is direct mapped and unusually small. Modern caches are
typically bigger (32 KB), are set associative with multiple sets, and are typically
hierarchical with multiple levels of caches. Hence, the chance for a cache conflict is
much smaller than for a one-way set associative cache. Larger caches can therefore
handle much more cache conflicts than the small cache on our experimentation plat-
form, but they too are limited, especially when running multiple concurrent applica-
tions.

Cache behavior is only one component of performance indeterminacy. Another
source is TLB behavior. We used memory traces obtained from the simulator to get an
impression of the TLB behavior. Simulating the TLB is quite tricky since a
MicroSPARC uses a random replacement algorithm based on the instruction cycle
counter. That is, whenever a TLB miss occurs, the TLB entry at the current cycle
counter modulo the TLB size (which is 32 for a MicroSPARC) is used to store the new
entry. As discussed earlier, the cycle counter values obtained from the simulator are
only an approximation. It therefore follows that the TLB simulation results are merely
an indication of TLB behavior. The TLB simulations revealed that there were no
misses for a hot TLB for a null user-to-kernel an kernel-to-kernel IPC. This is not
surprising since the benchmark working set consists of 7 pages and these adequately fit
within the TLB of a MicroSPARC.

For the remainder of this chapter we will further examine the IPC performance
and determine how well the microbenchmark results from this section compare to real
application data.

Invocation Chains
Invocation chains are a coroutine-like abstraction implemented by the kernel and

form the basis for our thread system, which is discussed below. The chains mechanism
is implemented in the kernel because flushing the register windows, a necessary opera-
tion to implement chain swapping, requires supervisor privileges on a SPARC proces-
sor. In addition, by implementing chains inside the kernel they can be easily integrated
with event management.

The main performance aspect of the invocation chain mechanism is that of chain
swapping. That is, how much time does it take to save the context of one chain and
resume with another. For this we devised a microbenchmark in which we measured the
time it took to switch between two different chains within the same context. Our
microbenchmark consists of two chains, the main chain and the auxiliary chain, and at
each pass the main chain switches to the auxiliary chain which immediately switches
back to the main chains. We used the same experimentation methodology as in the pre-
vious subsection and measured how long it took to execute one pass based on 10 runs
of 1,000,000 passes each. Since each pass contains two swaps with comparable cost,
we divided the result by two to obtain the cost for an individual chain swap. The
results are summarized in Figure 6.7.

SECTION 6.1 Kernel Analysis 167

Kernel User

Kernel

User

M
ai

n
C

ha
in

36.3

89.4

67.8

67.8

Auxilary Chain

Figure 6.7. Measured chain swap latency (in µsec) from the main chain to the

auxiliary chain, where the main and auxiliary chain are executing both in the

kernel, or both in the same user application, or one chain is executing in the

kernel and another in a user application.

Swapping between two kernel chains is the minimum sequence of instructions
required to change control from one to another chain. It consists of an interface
method invocation to a stub which calls the function that implements the actual chain
swap. To swap the chain the current context is saved, the chain pointers are swapped,
and the new context is restored. Restoring the new context consists of flushing the
current register window set, which saves the registers, and reloads one register window
from the new context which causes control to be transfered to the new invocation
chain. Swapping two user chains requires more work so we analyze this case in more
detail below.

The reason why swapping two user chains requires more work is that it involves
a method invocation to an interface implemented by the kernel. This is done by using
the proxy mechanism as described in Section 3.4.5. This mechanism allows a user to
invoke a method of an interface after which control is transparently transfered to the
kernel where the interface dispatch function calls the actual method. In Figure 6.8 we
show the call graph of the functions and traps involved in swapping between two user
chains. As in the previous section, we used our simulator to obtain an instruction trace
and we counted the number of instructions and simulated cycles during a user-to-user
chain swap

A user-to-user chain swap executes 1345 instructions and 1682 simulated cycles
which takes a simulated 33.6 µsec. As in the previous section, these simulation results
do not take cache or TLB misses into effect. This is clear from the measured perfor-
mance of 89.4 µsec. This mismatch is largely due to d-cache misses. The d-cache has
a hit rate of 51.6% The number of i-cache misses on the other hand are minimal. Its hit
rate is 87.3%. The simulation showed no TLB misses during a chain swap, which
makes sense since the working set for this benchmark, 8 pages, fits comfortably in the
TLB.

If we look at the call graph in Figure 6.8, we see that about 59% of the instruc-
tions and 62% of the cycles are due to switching chains (disable interrupts, save state,
restore state, and enable interrupts). The interface handling overhead (proxy interface,

168 Experimental Verification CHAPTER 6

Call: swap chain method (23, 25)

Trap: invoke event (147, 178)

Call: interface dispatcher (78, 82)

Call: chain swap stub (22, 27)

Call: disable interrupts (40, 49)

Call: get chain id (45, 50)

Call: swap chains (43, 55)

Call: save state (4, 7)

Call: restore state (7, 9)

Trap: register window overflow (61, 84)

Call: flush register windows (38, 39)

Trap: register window overflow (61, 84)

Trap: register window overflow (61, 84)

Trap: register window overflow (61, 84)

Trap: register window overflow (61, 84)

Trap: register window overflow (61, 84)

Trap: register window overflow (61, 84)

Trap: register window underflow (57,69)

Trap: register window underflow (57, 69)

Call: enable interrupts (25, 31)

Trap: register window underflow (57,69)

Trap: register window underflow (57,69)

Trap: register window underflow (57,69)

Trap: event return (102, 126)

Trap: register window underflow (59, 71)

Figure 6.8. Call graph of a user to user chain swap indicating traps and pro-

cedure calls. The values in the parenthesis indicate the number of simulated

instructions in an instruction block and the estimated number of execution

cycles.

method dispatch and stub method), which accounts for 22% of the instructions and
20% of the cycles, represents the cost introduced by our extensible system. The user-
to-kernel transition accounts for about 19% of the instructions and 18% of the cycles.

The question we set out to answer was whether microbenchmark results were
representative for application results, in this case user-to-user chain swap performance
results. The difference between user-to-user and kernel-to-kernel chain swaps is 53.1
µsec which comprises 59% of the total performance. This time is spent in the IPC,
interface dispatch mechanism and a register window underflow routine to handle a sub-

SECTION 6.1 Kernel Analysis 169

routine return. All the other code, invoking the interface method, calling the swap
chain stub, saving and restoring state is similar in both cases. At first glance, one
would assume the cost of a user-to-user chain swap to be equal to a kernel-to-kernel
chain swap plus the overhead for the IPC and interface dispatching. This would lead to
the conclusion that 59% of the time is spent in 29% of the executed instructions of
which, according to the IPC benchmark, only 9.5 µsec is spent by the IPC and thus the
remaining 43.6 µsec would be spent in the interface dispatching code. This is obvi-
ously not right since the number of instructions and cycles used by the interface
dispatch code are dwarfed by those of the IPC path code. Instead, when we look more
closely at the simulated instruction and memory traces we notice two additional regis-
ter window overflows and one register window underflow between kernel-to-kernel
and user-to-user chain swaps. Our cache simulations further revealed that a kernel-to-
kernel chain swap has a much higher d-cache hit rate of 72.5%, as opposed to a d-cache
hit rate of 51.6% for a user-to-user chain swap. I-cache hit rates were high in both
cases, and the TLB simulation revealed no TLB misses. This is not too surprising since
the small working set of 8 pages fits comfortably in the TLB. Without an in-circuit
emulator (ICE) it is difficult to further refine this performance analysis. However, it is
clear that the intuitive approach fails and that the IPC microbenchmark is not a good
indicator for the expected user-to-user chain swap performance.

Implementation Complexity
The design guideline for the kernel was to remove everything that is not neces-

sary to preserve the integrity of the system. The result was a small base kernel of about
10,000 lines of source code. As shown in Figure 6.9 the kernel consists of about 70%
commented C++ source code (headers and program code) and 27% commented
SPARC assembly language source code. The high percentage of assembly language
source code is due to the register window handling code, which cannot be written in a
high-level language. Most the C++ code deals with implementing event management,
virtual and physical memory management, name space management, and device alloca-
tion management. About 45% of the source code is machine and architecture depen-
dent. The remainder is machine independent and should be portable to different archi-
tectures and platforms. A small number of ODL files define the bindings for the inter-
faces exported by the kernel and are machine independent. The compiled kernel occu-
pies about 100 KB of instruction text and about 40 KB of initialized data.

6.2. Thread System Analysis
In this section we will be looking at the most important performance characteris-

tic of our unified migrating thread package, the thread context switch cost, and relate
the results to the microbenchmarks which we discussed in the previous section. Where
possible, we compare and explain the results of similar microbenchmarks that we ran
on Solaris 2.6 on the same hardware. Finally, we will discuss the implementation com-

170 Experimental Verification CHAPTER 6

HeadersC++

Assembler

ODL

Figure 6.9. Distribution for the lines of source code in the kernel.

plexity of the thread package by looking at the number of source code lines required for
its implementation.

Thread Context Switches
One of the most important performance metrics for any thread package, besides

the cost of synchronization operations, is the time it takes to switch from one thread
context to another. That is, the time necessary to suspend one thread and resume
another. Lower thread context switch times are desirable since they enable higher con-
currency. To measure the cost of a thread context switch, we devised a microbench-
mark that is similar to the microbenchmark for invocation chains which we discussed
in the previous section. The microbenchmark runs as a kernel extension or user appli-
cation and creates an auxiliary thread that repeatedly calls yield to stop its own thread
and reschedule another runnable thread. The main thread then measures the perfor-
mance of itself executing 1,000,000 thread yield operations for 10 runs. When the
main thread executes a yield, the auxiliary thread is scheduled which in turn immedi-
ately yields, which causes the main thread to be scheduled again. This microbench-
mark results in 2,000,000 thread switches per run and the cost per thread switch is
shown in Figure 6.10 together with the results of a similar test on Solaris 2.6 using
POSIX threads [IEEE, 1996].

We ran the thread context switch microbenchmark in three configurations:

1) As a kernel extension on Paramecium where the two threads were running in
the kernel. The thread package and counter device were colocated with the
benchmark in the kernel’s address space.

SECTION 6.2 Thread System Analysis 171

� ���

Operating System Thread switch� �� ���

Paramecium (kernel) 64.2
� ���

Paramecium (user) 117.1
� ���

Solaris 2.6 (user) 83.5
� ���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 6.10. Measured thread context switch time (in µsec) for running the

microbenchmark as a Paramecium kernel extension, user application, and as a

Solaris 2.6 application.

2) As a user application on Paramecium where the two threads were running in
the same user context. Here too the thread package and counter device were
colocated with the benchmark in the user’s address space.

3) As a user application on Solaris 2.6 where the two threads were running in
same user context. The thread package of Solaris is a hybrid thread package
in the sense that user-level threads can be mapped onto kernel threads. In our
case this mapping did not occur since the two threads did not make any sys-
tem calls to the kernel.

The low performance numbers for Paramecium in Figure 6.10 for a user-to-user
thread context switch are intriguing since a thread context switch is essentially a chain
swap. For a chain swap we achieved 36.3 µsec from within a kernel extension and 89.4
µsec from a user application. The latter number is more in line with the measured per-
formance for a Solaris 2.6 thread context switch which essentially consists of a setjmp

and longjmp operation (see ANSI C standard [International Standard Organization,
1990]). The Solaris longjmp operations requires a register window flush for which it
traps to a fast path into the kernel. Paramecium uses a regular method invocation
instead, and performs part of the swapping in the kernel, However, that does not com-
pletely explain the 33.6 µsec difference between a Paramecium and Solaris thread
switch. Hence, we proceed to determine why a Paramecium user-to-user thread con-
text switch is so expensive as compared to Solaris.

To figure this out, we used the simulator to obtain the call graph shown in Fig-
ure 6.11 which shows the calls and traps during one thread switch between two threads
executing in user space. Yielding a thread consists of calling the yield method through
the thread interface. This will cause control to transfered to the yield stub which sets a
global lock, which is used to prevent race conditions, and calls the scheduler. The
scheduler determines what to do next, and in this case it consists of resuming the auxi-
liary thread. To do this, the scheduler leaves the critical region by releasing the global
lock and invokes the chain swap method implemented by the kernel. This will cause
another thread to be activated, which will then return to the scheduler, which in turn

172 Experimental Verification CHAPTER 6

acquires the global lock to enter the critical region. It will update some data structures
and return to the yield stub routine, which releases the global lock and returns to the
caller.

Call: yield method (14,16)

Call: yield stub (12,14)

Call: enter critical region (8,11)

Call: scheduler (52,60)

Call: leave critical region (8,11)

Call: swap chain method (1375,1743)

(see Figure 6.8)

Call: enter critical region (16,22)

Trap: window underflow (59,71)

Call: leave critical region (16,22)

Trap: window underflow (59,71)

Trap: window underflow (59,71)

Figure 6.11. Call graph of a thread switch between two user threads. The

values in the parenthesis indicate the number of simulated instructions in an

instruction block and the estimated number of execution cycles.

If we look more closely at the number of simulated instructions and cycle counts
in Figure 6.11 it becomes that most important cost component is the swapping of two
chains, which takes about 82% of the instructions and 83% of the simulated cycles.
The code path for kernel-to-kernel thread context switches is exactly the same with the
exception that they do not require a user-to-kernel IPC to invoke the chain swap
method. If we take the thread context switch costs from Figure 6.10 and subtract the
cost for a chain swaps from Figure 6.7 we notice that the additional overhead for
kernel-to-kernel thread switches is 27.9 µsec and for user-to-user thread switches it is
27.7 µsec. While deceiving, this is not the overhead caused by our thread package. To
determine this, we modified the thread package slightly and commented out the call to
the swap chain method in the scheduler and ran the microbenchmark again. This
revealed that the additional overhead is merely 7.3 µsec per thread yield call when we
ran it as a kernel extension and 9.2 µsec per thread yield call when we ran it as a user
application.

Although it is hard to be conclusive about where the time is being spent without
an in-circuit emulator, it appears that the thread package incurs a significant overhead
for a simple yield operation that cannot be explained by simply looking at the micro-
benchmark results. For example, if we use the microbenchmark results to estimate a
user-to-user thread switch, we would arrive at 89.4 + 9.2 = 98.6 µsec per thread context
switch, which does not account for the additional 18.5 µsec we measured. Again we

SECTION 6.2 Thread System Analysis 173

notice that the microbenchmark results are not a good indicator for the actual measured
results.

To explain where the additional 18.5 µsec is spent we returned to our simulator
for instruction and memory traces. From the instruction traces it became clear that
both kernel-to-kernel and user-to-user thread context switches execute two additional
window overflows and underflows. This accounts for an approximate additional 9.4
µsec for kernel-to-kernel and 10.4 µsec for user-to-user thread context switches when
compared to a pure chain swap. The additional time appears to be spent handling cache
misses: A kernel-to-kernel thread context switch results in an i-cache hit rate of 98.3%
and a d-cache hit rate of 85%. A user-to-user thread context switch resulted in an i-
cache hit rate of 95% and a d-cache hit rate of 73.4%. The TLB simulation showed no
TLB misses, which is understandable given that the working set, 11 and 12 page for
kernel-to-kernel and user-to-user thread switches, respectively, fits comfortably within
the TLB.

Implementation Complexity
The thread package consists of about 3000 lines of source code of which most,

94% (see Figure 6.12), is commented C++ source code (headers and program code).
The remaining source code consists of an ODL file, which specifies the bindings for
the interfaces exported by the thread package, and a very small assembly language rou-
tine that assists in managing call frames. Call frames are the mechanism for linking
together procedure calls and are inherently machine dependent. Overall, about 4.5% of
the source code is machine dependent, this consists of the assembly language code and
a header file containing machine specific in-line functions for implementing an atomic
exchange.

6.3. Secure Java Run Time System Analysis
In this section we look at some of the performance aspects of a nontrivial

Paramecium application: The secure Java™ virtual machine. Our prototype Java Vir-
tual Machine (JVM) implementation is based on Kaffe, a freely available JVM imple-
mentation [Transvirtual Technologies Inc., 1998]. We used its class library implemen-
tation and JIT compiler. We reimplemented the IPC, garbage collector, and thread sub-
systems. Our prototype implements multiple protection domains and data sharing. For
convenience, the Java Nucleus, the TCB of the JVM, contains the JIT compiler and all
the native class implementations. It does not yet provide support for text sharing of
class implementations and has a simplified security policy description language.
Currently, the security policy defines protection domains by explicitly enumerating the
classes that comprise it and access permissions for each individual method. The
current garbage collector is not exact for the evaluation stack and uses a weaker form
to propagate export set information.

For this section we used our own IPC microbenchmarks rather than existing ones
like Caffeine Marks. The reason for doing so is that many existing benchmarks depend

174 Experimental Verification CHAPTER 6

Headers

C++

Assembler

ODL

Figure 6.12. Distribution for the lines of source code in the thread system.

on the availability of a windowing system, something Paramecium does not yet sup-
port. Existing tests that do not require windowing support are often simple tests that do
not exercise the protected sharing mechanisms of the Java Nucleus.

Cross Domain Method Invocations
To determine the cost of a Java cross domain method invocation (XMI) using our

Java Nucleus, we constructed two benchmarks that measured the cost of an XMI to a
null method and the cost of an XMI to a method that increments a class variable. The
increment method shows the additional cost of doing useful work over a pure null
method call. These two methods both operated on a single object instance whose class
definition is shown in Figure 6.13. Like all the other benchmarks, each run consisted of
1,000,000 method invocation and the total test consisted of 10 runs.

The measured performance results for a null XMI and increment XMI, together
with their intra-domain method invocations, are summarized in Figure 6.14. We ran
the benchmarks in three different configurations:

� One where the classes resided in the same protection domain.
� One where the classes were isolated into different protection domain and

where the Java Nucleus was colocated with the kernel.
� One where the classes were isolated into different protection domain and

where the Java Nucleus was located a separate user protection domain.

As discussed in Section 5.2.3, colocating the Java Nucleus in the kernel does not
reduce the security of the system since both the kernel and the Java Nucleus are con-
sidered part of the TCB. However, the configuration where it runs as a separate user

SECTION 6.3 Secure Java Run Time System Analysis 175

class TestObject {
static int val;

public void nullmethod()
{

return;
}

public void increment()
{

val++;
}

}

Figure 6.13. Java test object used for measuring the cost of a null method and

increment method XMI.

application is more robust since faults caused by the Java Nucleus cannot cause faults
in the kernel. On the other hand, colocating the Java Nucleus with the kernel will
improve the performance of the system.

� ���

Benchmark Intra-domain Cross Domain Invocation
� ���

Invocation Kernel User� �� ���

Null XMI 0.7 49.3 101.8
� ���

Increment XMI 1.4 53.1 105.1
� ���
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�

�
�
�
�
�
�

�
�
�
�
�
�
�
�

Figure 6.14. Measured Java method invocation cost (in µsec) for a null

method and an increment method within a single protection domain and a

cross domain invocation between two Java protection domains where the Java

Nucleus is either colocated with the kernel or in a separate protection domain.

Performing an XMI from one object to another, say from the main program
BenchMark to the above mentioned TestObject.nullmethod, involves a number of
Paramecium IPCs. When the BenchMark program, which resides in its own protection
domain, invokes the nullmethod, the method call will cause an exception trap since that
object and its class reside in a different protection domain. This will cause control to
be transfered to the Java Nucleus since it handles all exceptions thrown by the protec-
tion domains it manages. When handling this exception, the Java Nucleus will first
determine whether it was caused by a method invocation and, if so, the Java Nucleus
will find the corresponding method descriptor. When the exception was not raised by a
call or it does not have a valid method descriptor, the Java Nucleus will raise an
appropriate Java exception. Using the method descriptor, the Java Nucleus will check

176 Experimental Verification CHAPTER 6

the access control list to determine whether the caller may invoke the requested
method. If the caller lacks this access, an appropriate Java security exception is raised.
If access is permitted, the Java Nucleus will copy the method arguments, if any, from
the caller stack onto a new stack that is used to invoke the actual method. The argu-
ments are copied directly, except for pointers which have to be marked exportable as
we discussed in 5.2.4. For efficiency, we use a block copy and a bitmask to denote
which words in the block constitute pointer values which are handled separately. When
all the arguments are processed, an event is invoked to pass control to the actual
method which in this case is nullmethod. The latter requires an explicit, and therefore
more expensive, event invocation, because it is impossible to associate a specific stack,
on which the arguments are copied, with an exception fault.

In the kernel configuration, where the Java Nucleus is colocated with the kernel,
only two IPCs are necessary to implement a single XMI: one IPC from a source
domain into the Java Nucleus and one IPC from the Java Nucleus to the target domain.
The first IPC takes the fast path by raising a memory exception, the second IPC
requires an explicit event invocation. Because of this explicit event invocation the user
configuration, where the Java Nucleus is isolated in its own separate protection
domain, requires three IPCs: one fast event invocation to the Java Nucleus by raising a
memory exception, an explicit event invocation to the target domain that requires an
additional IPC to the kernel to perform it.

At first glance, we would assume that the XMI performance for the Java Nucleus
colocated with the kernel would be the cost of a fast IPC operation from user space, 9.5
µsec, plus an explicit event invocation from the kernel to the target domain, 23.1 µsec†,
and thus be something around 32.6 µsec instead of the measured 72.6 µsec. Similarly,
for a Java Nucleus running as a user application we would expect the cost of an XMI to
be the cost of calling the Java Nucleus from the source domain, 9.9 µsec, plus an IPC to
the kernel for the explicit event invocation, 9.5 µsec, plus the actual transfer to the tar-
get domain, 23.1 µsec, totaling 42.5 µsec instead of the measured 116.7 µsec. Again
we see that the microbenchmarks from Section 6.1 are bad performance predictors and
that the actual measured performance is much higher.

This performance discrepancy between the predicted cost and measured cost for
a Java XMI between two protection domains is substantial. For example, in the case of
the configuration where the Java Nucleus is colocated in the kernel the difference is
about 16.7 µsec. To get an insight into where this additional time was spent we used
our simulator to obtain instruction and memory traces for single XMI. From this we
generated the call graph shown in Figure 6.15 which depicts a single XMI using the
configuration where the Java Nucleus is colocated with the kernel.

Figure 6.15 shows that most of the time for an XMI is spent in the code for cross
protection domain transitions: that is, invoke event, invoke handler, handler return, and
� ���������������������������

†In Section 6.1 we focussed event invocations by generating an exception, we did not discuss similar
benchmark results using an explicit event invocation. A single kernel to user event invocation takes 23.1
µsec.

SECTION 6.3 Secure Java Run Time System Analysis 177

Call: TestObject.nullmethod (22,28)

Trap: invoke event (139,165)

Call: Java Nucleus dispatcher (54,57)

Call: event invoke stub (33,35)

Call: event invoke proper (30,34)

Call: disable interrupts (25,30)

Call: get event id (100,118)

Call: invoke handler (138,186)

Trap: null method (4,7)

Trap: handler return (83,97)

Trap: invoke return (103,127)

Figure 6.15. Call graph of a Java XMI between two Java protection domains

where the Java Nucleus is colocated with the kernel. The values in the

parenthesis indicate the number of simulated instructions in an instruction

block and the estimated number of execution cycles.

event return. These account for about 63% of the instructions and 65% of the simu-
lated cycles. There are no explicit register window overflows and underflows during
this XMI, but some windows are implicitly saved and restored during the trap handling
which accounts for higher IPC times. The cache simulator revealed a high i-cache hit
rate of 95.1%. and a surprisingly high, for the size of the application, d-cache hit rate
of 84%. The latter is probably due to the fact that the method did not have any parame-
ters and therefore the Java Nucleus dispatcher did not have to copy arguments or
update memory references. The working set was small and revealed no additional TLB
misses. Hence, the additional time was probably spent in the implicit register window
handling that is part of the IPC code and in handling cache misses.

Implementation Complexity
The current implementation of the Java Nucleus consists of about 27,200 lines of

commented header files and C++ code. For convenience this includes the just-in-time
compiler and much of the native Java run-time support. Most of the code is machine
independent code (57.8%) and it deals with loading class files, code analysis, type
checking, etc. The just-in-time compiler takes up 20.8% of the source code, and at least
14.2% of the source code consists of implementing the native Java classes such as the
thread interface, file I/O, security manager, etc. Most of these packages should be
implemented outside the Java Nucleus. Finally, only 7.2% of the source code is
SPARC dependent, and it includes support code for the just-in-time compiler and stack
definitions.

178 Experimental Verification CHAPTER 6

Machine independent

SPARC

Native packages

Just-in-time compiler

Figure 6.16. Distribution for the lines of source code in the secure Java virtual

machine.

6.4. Discussion and Comparison
In this chapter we looked at some of the performance aspects of our extensible

operating system kernel, one of its extensions, our thread package, and one of its appli-
cations, our secure Java virtual machine. We measured the performance by running a
number of (micro) benchmarks on the real hardware and used our SPARC architecture
simulator to analyze the results. The main conjecture of this chapter was that micro-
benchmarks are bad performance predictors because they do not capture the three
sources of performance indeterminacy on our target architecture. These are:

� Register window behavior.
� Cache behavior.
� TLB behavior.

These performance indeterminacy sources may have, as we showed in our meas-
urements, serious performance impact for applications and even other microbench-
marks. Granted, our experimentation platform has register windows and an unusually
small instruction and data cache which aggravates the problem of cache miss behavior
as we showed in our simulations. Although modern machines have bigger and multi-
way set associative caches, which certainly reduce this problem, these indeterminacy
sources still present a source of random performance behavior even on these newer
machines.

System level simulators for performance modeling have long been an indispens-
able tool for CPU and operating system designers [Canon et al., 1979]. Unfortunately,

SECTION 6.4 Discussion and Comparison 179

they are not generally available because they contain proprietary information.
Academic interest in system level simulators started in 1990 with g88 [Bedichek, 1990]
and more recently with SimOS [Rosenblum et al., 1995] and SimICS [Magnusson et
al., 1998]. The latter two systems have been used extensively for system level perfor-
mance modeling. Our simulator started with a more modest goal: The functionally
correct emulation of our experimentation platform to aid the debugging of various parts
of the operating system. We later extended the simulator to produce memory and
instruction traces which were used as input to a cache simulator which emulated the
direct mapped 4 KB i-cache and 2 KB d-cache.

In our simulations we tried to be as accurate as possible. We ran the same confi-
guration, the same kernel and benchmark binaries and made sure data was allocated at
the same addresses as on the real machine for the actual measurements. Disturbances
that were not captured by our simulator included the timer interrupt, the systems watch-
dog timer, and the exact TLB behavior. All of these require an accurate independent
clock, while our simulated clock is driven by the simulated cycle counter which is
based on optimistic instruction cost.

180 Experimental Verification CHAPTER 6

7

Conclusions

The central question in this thesis is to determine how useful extensible operating
systems are. To determine this, we designed and implemented a new extensible operat-
ing system kernel, some commonly used system extensions, and a number of interest-
ing applications in the form of language run-time systems. We showed that we could
take advantage of our system in new and interesting ways, but this does not determine
how useful extensible systems are in general. It only determines how useful our exten-
sible system is.

In fact, the question is hard to answer. In an ideal extensible system a trained
operating system developer should be able to make nontrivial application-specific
enhancements that are very hard to do in traditional systems. To test this would require
a double experiment in which two groups are given the same set of enhancements
where the first group has to implement it on an extensible system and the second on a
traditional system. Neither we nor any other extensible systems research group for that
matter, has performed this experiment due to the large time and human resource
requirements. This would definitely be a worthwhile future experiment.

Even though we cannot answer the question of whether extensible operating sys-
tems are useful in general, we can look at our own system and determine which aspects
were successful and which not. In the next sections we will analyze, in detail, each
individual thesis contribution (summarized in Figure 7.1) and point out its strengths,
weaknesses, and possible future work. In turn, we describe the object model, operating
system kernel, system extensions, run-time systems, and system performance.

7.1. Object Model
The object model described in Chapter 2 was designed for constructing flexible

and configurable systems, and was built around the following key concepts: local
objects, interfaces, late binding, classes, object instance naming, and object composi-
tioning.

181

� ���

Topic Thesis contribution� �� ���

Object Model A simple object model for building an extensible systems that

consists of interfaces, objects and an external naming scheme.
� ���

An extensible event-driven operating system.

A digital signature scheme for extending the operating system

nucleus.

Kernel

A flexible virtual memory interface to support Paramecium’s

lightweight protection domain model.
� ���

A migrating thread package that integrates events and threads

and provides efficient cross domain synchronization state

sharing.

An efficient cross protection domain shared buffer system.

System Extensions

An active filter mechanism to support filter based event

demultiplexing.
� ���

An object based group communication mechanism using

active messages.

An extensible parallel programming system.

Run-time Systems

A new Java virtual machine using hardware fault isolation to

separate Java classes transparently and efficiently.
� ���

System Performance A detailed analysis of IPC and context switch paths encom-

passing the kernel, system extensions, and applications.
� ���
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�

Figure 7.1. Main thesis contributions.

Originally the object model was designed to be used in Paramecium and Globe
[Van Steen et al., 1999], but the actual implementation and use of the model in these
two systems diverged over time. This divergence was caused mainly by the different
focus of the two projects. For Paramecium, configurability and size were the most
important issues, while for Globe, configurability and reusability were important. In
the paragraphs below we discuss the advantages and disadvantages of the object model
from a Paramecium perspective and suggest improvements for future work.

Paramecium’s flexibility and configurability stem from the use of objects, inter-
faces, late binding and object instance naming. Separation into objects and interfaces
are sound software engineering concepts that help in controlling the complexity of a
system. Combining these concepts with late binding and implementing binding to an
external object by locating it through the object instance name space turns out to be a
very intuitive and convenient approach to build flexible systems. It is also very effi-
cient since the additional overhead for these extensibility features occur mainly at bind-
ing time rather than use time. Further enhancements, such as the name space search

182 Conclusions CHAPTER 7

rules, appear useful in certain situations (see Section 4.1.5) but do require further inves-
tigation.

Any object model introduces layering which has an impact on the performance of
a system. Traversing a layer, that is, making a procedure call, incurs an overhead that
increases with the number of layers introduced. This is not a new problem and has
been studied by researchers trying to optimize network protocol stacks. Their
automated layer collapsing solutions might be applicable to reduce the layering over-
head for our object model.

Paramecium uses classless objects but this is a misnomer: they are actually
modules or abstract data types. Paramecium does not use classes because the imple-
mentation overhead is considerable, they add complexity rather than help manage com-
plexity and their reusability properties are of limited value. This is not too surprising
since, for example, a device driver usually requires only one instance and forcing a
class concept onto it does not simplify it. Therefore, a possible future enhancement
should be the removal of the class and all associated concepts.

It is also unclear how useful object compositioning is. In the current system
composite objects are used more as a conceptual tool than as an actual physical realiza-
tion. This is no doubt caused by the lack of appropriate tools that assist in the construc-
tion of composite objects (tools do exist to build interfaces and local objects which are
consequently widely used). The use and construction of composite objects is definitely
worth further study.

7.2. Kernel Design for Extensible Systems
In Chapter 3 we described our extensible kernel that forms the basis for the appli-

cations and experiments described in this thesis. The kernel forms a small layer on top
of the hardware and provides a machine independent interface to it. We attempted to
make the kernel as minimal as possible and used the rule that only functions that are
crucial for the integrity of system should be included. All others, including the thread
system, were implemented as separate components that were loaded into the system on
demand. These components can either be loaded into the kernel’s address space, pro-
vided they have the appropriate digital signature, or in user’s address space. To aid
experimentation, we took care that almost every component could be loaded either into
user of kernel space.

In our experiments we found that colocating modules with the kernel is only
necessary in configurations that require sharing. In all other cases, the same func-
tionality could be obtained by colocating the module, such as the thread system or a
device driver, with the application in the same user-level’s address space. In this thesis
we concentrated primarily on application-specific operation systems and as such ran
only a single application at a time. In these configurations extending the kernel was
hardly ever necessary. Future research should include exploring the usefulness of ker-
nel extensions in an environment with multiple potentially hostile applications.

SECTION 7.2 Kernel Design for Extensible Systems 183

Our base kernel provides a number of mechanisms that are essential building
blocks for extensible applications. Below we will discuss the four main mechanisms to
determine how useful they are and what possible future research is required.

Address Space and Memory Management
One of key mechanisms provided by the kernel is address space and memory

management. These two mechanisms support Paramecium’s lightweight protection
domain model in which a single application is divided into multiple protection domains
to enforce internal integrity. By decoupling physical and virtual memory management
we made it possible for applications to have fine grained control over their virtual
memory mappings and shared memory with other protection domains. This enabled
applications such as the secure Java virtual machine described in Chapter 5.

Another useful primitive is the ability to give away part of an address space and
allow another protection domain to manage it as if it was its own. That is, the ability to
create and destroy virtual memory mapping and receive page fault events. This ability
forms the basis of our shared buffer mechanism and could be used to implement a
memory server. A memory server that manages memory for multiple protection
domains is left for future research.

Initially, protection domains are created with an empty name space and it is up to
the creator to populate it. That means that a protection domain cannot invoke a method
from any interface unless the parent gave it to its child. This is fundamental for build-
ing secure systems. A secure operating system based on Paramecium clearly warrants
further research. For this it needs to be extended to include mandatory access control
to protect resource identifiers, a mechanism to control covert and overt channels
between different security levels, and mechanisms to implement strict resource con-
trols.

Event Management
The basic IPC mechanism provided by the kernel is that of preemptive events.

Preemptive events are a machine independent abstraction that closely models hardware
interrupts, one of the lowest level communication primitives. This particular choice
was motivated by the desire to provide fast interrupt dispatching to user-level applica-
tions and the desire to experiment with a fully asynchronous system. In addition, from
a kernel perspective, preemptive events are simple and efficient to implement. As a
general user abstraction they are cumbersome to use, so we created a separate thread
package that masked away most of the asynchronous behavior. It still requires applica-
tions to lock their data structures conservatively since their thread of control can
preempted at any time.

The actual implementation of Paramecium’s event handling using register win-
dows was less successful. We spent a lot of time on providing an efficient implementa-
tion that reduces the number of register window spills and refills. In retrospect this
proved unfruitful for several reasons. First of all, the software overhead for dealing

184 Conclusions CHAPTER 7

with register windows is highly complex. In fact, the implementation was so complex
that we had to developed a full SPARC workstation simulator (described Section 1.6)
to debug the register window code. Second, the actual performance gain compared
with Probert’s [Probert, 1996] register window-less implementation is minimal and his
implementation is much less complex. On the other hand, applications do pay a 15%
performance penalty [Langendoen, 1997] by not being able to use leaf function optimi-
zations. In addition, when we made the design decisions for our system, compilers that
did not use register windows were not readily available and therefore we quickly
dismissed a register window-less solution. Finally, implementing an efficient event
scheme using register windows is less interesting as they have become an obsolete
technology. Except for Sun Microsystems Inc., no one has adopted this technology and
even Sun has found other uses for register windows on their SPARC V9 processors
[Weaver and Germond, 1994]. These include multithreading support as inspired by
MIT’s Sparcle processor [Agarwal et al., 1993]. By now, as is underscored by our
experience in this thesis, most researchers agree that register windows are a bad idea
and that their advantages are mostly overtaken by advances in compile-time and link-
time optimizations.

Closely associated with events is the interrupt locking granularity in the kernel.
In order to increase the concurrency of the kernel we used fine grained interrupt lock-
ing to protect shared data structures in the kernel. In retrospect this was a less fortunate
design decision. The reason for this is that the locking overhead is high, especially
since each interrupt lock procedure has to generate an interrupt to overcome a potential
race condition (see Section 3.4.4) and locks tend to occur in sequences. On the other
hand, since the kernel is small and has only short nonblocking operations, there is
hardly a need for fine grained interrupt locking. Future work might include exploring
the trade-offs between fine grained locking and atomic kernel operations. The later
require only one interrupt lock which they hold until the operation is completed.

Name Space Management
The kernel name space manager provides a system-wide location service for

interfaces to object instances. A protection domain’s interface is populated by its
parent who decides what interface to provide to the child. For example, it might
choose not to give the child an interface to the console, thereby preventing the child
from producing any output. This system-wide name space is a powerful concept that
elegantly integrates with kernel extensions. That is, kernel extensions can locate any
object instance since the kernel is the parent of all protection domains.

The kernel name space manager automatically instantiates proxy interfaces for
objects that are situated in different protection domains. Currently these proxy inter-
faces are rather rudimentary and limit arguments to the amount that fit into the registers
passed from one domain to another. To overcome this limitation and to provide more
elaborate and efficient marshaling schemes, a technique such as the one used in Pebble

SECTION 7.2 Kernel Design for Extensible Systems 185

[Gabber et al., 1999] can be used. How to provide an efficient IPC mechanism with
richer semantics is another possible future direction for Paramecium.

Device Management
The Paramecium kernel contains a device manager that is used to allocate dev-

ices. Its current policy is simple: the first protection domain to allocate a device
obtains an exclusive lock on it that remains active until the device is released. The dev-
ice manager has some limited knowledge about relationships between devices. For
example, when the Ethernet device is allocated on a SPARCClassic it also exclusively
locks the SCSI device because of its shared DMA device. Future research directions
could include a scheme where multiple protection domains can allocate conflicting
devices and use a kernel-level dispatcher, as in the ExoKernel [Engler et al., 1994] or
the active filter mechanism, to resolve conflicts.

7.3. Operating System Extensions
The operating system extensions described in Chapter 4 can be divided into two

groups. The first group contains the unified migrating thread system and the shared
buffer system, both of which support Paramecium’s lightweight protection domain
model. In this model applications are internally divided into very closely cooperating
protection domains to increase their robustness, especially when they are working with
untrusted data. The second group consists of the active filter mechanism, which is a
way of dispatching events to multiple recipients based on filter predicates. We discuss
each of these systems in turn.

Unified Migrating Threads
The unified migrating thread system combines events and threads into a single

thread abstraction by promoting events to pop-up threads if they block or take too long.
In addition to pop-up threads, the system also supports the notion of thread migration
which simplifies the management of threads within a cluster of closely cooperating
protection domains. The performance of the thread system, as shown in Chapter 6, is
disappointing and is primarily due to the machine’s architectural constraints. That is,
the thread system has to call the kernel for each thread switch. On different architec-
tures threads can be switched in user space and this would clearly improve the perfor-
mance of the thread system. However, the thread system still has to call the kernel to
switch the event chains since these are the underlying mechanism for thread migration.
This kernel call can probably be eliminated by storing the migration state on the user’s
stack and carefully validating them when returning from an event invocation. How-
ever, this is not a perfect solution because it complicates destroying an event chain. An
efficient implementation of our thread mechanisms on different architectures certainly
merits further study.

Synchronization state sharing is a novel aspect of our thread system and has
important applications in closely cooperating protection domains that require frequent

186 Conclusions CHAPTER 7

synchronization. Our synchronization state sharing technique could be used to optim-
ize Unix’s inter-process locking and shared memory mechanisms [IEEE, 1996], but
these applications have not been explored.

Network Protocols
The shared buffer system shows the versatility of relinquishing control over part

of your virtual address space and giving it to the shared buffer system to manage it for
you. Because of this primitive, the implementation of the shared buffer system is sim-
ple and straightforward. It only has to keep track of existing buffer pools and map
them when requested. Our current buffer scheme provides mutable buffers and expects
that every cooperating party is reasonably well behaved. Interesting future research
might include exploring a shared buffer system for hostile applications while still pro-
viding good performance.

Active Filters
Active filters are an efficient event demultiplexing technique that uses user sup-

plied filter expressions to determine the recipient of an event. Unlike traditional filters,
such as packet filters, active filters have access to a part of the user’s address space and
their evaluation may have side effects. In some sense, active filters are a different
extension technique to the one used for the kernel in Chapter 3. Active filters were
designed with idea of providing a structured and convenient way to migrate computa-
tion from the user into a dispatcher in the same or in a different protection domain or
device. Especially migrating computation to an intelligent I/O device is a fruitful area
of further research.

7.4. Run Time Systems
In Chapter 5 we presented two different run-time systems that take advantage of

the Paramecium extensible operating system kernel and its extension features. The
first system, a runtime system for Orca (FlexRTS), shows how to apply application
specific extensions to a runtime system. In our second system, a secure Java virtual
machine, we show how Paramecium’s lightweight protection domain model can be
used in a runtime system that deals with potentially mutually hostile applications.
Since they are two very different applications we will discuss them separately.

Extensible Run Time System for Orca
In the FlexRTS runtime system we were mostly concerned with the mechanisms

required to provide application specific shared-object implementations rather than pro-
viding a single solution that fits all. The primary motivation was to be able to relax the
ordering requirements for individual shared objects and use different implementation
mechanisms such as the active filters described in Chapter 4. Our FlexRTS work raises
many questions which are left for future research. For example, in our system the
shared-object implementations are carefully hand coded in C++ and it is not clear how

SECTION 7.4 Run Time Systems 187

these could be expressed in the Orca language themselves. More importantly, how do
application-specific shared-object implementations interact with the normal shared
objects that enforce a total ordering on their operations? Is there an automatic or anno-
tated way to determine when to relax the ordering semantics? An investigation of both
of these questions would be quite interesting.

Secure Java Run-time System
The secure Java Virtual Machine (JVM) presented in Chapter 5 provides a Java

execution environment based on hardware fault isolation rather than software fault iso-
lation techniques. This is in sharp contrast with current JVM implementations which
are all based on software protection techniques.

The key motivation behind our secure JVM work was to reduce the complexity
of the trusted computing base (TCB) for a Java system. Current JVM designs do not
make an attempt to minimize the TCB in any way. Rather, they implement the JVM as
a single application in a single address space. Our secure JVM implements the JVM in
multiple address spaces and limits the TCB to a trusted component, called the Java
Nucleus, that handles communication and memory management between the address
spaces containing the Java classes. It does this by including some additional manage-
ment code and, as a result a small increase in latency for method invocations across
security boundaries (i.e., the cross protection domain method invocations) and by trad-
ing off memory usage versus security. In our opinion this is an acceptable trade-off
that is under the control of the security policy.

The prototype implementation described in Section 5.2.5 lacks a number of the
optimizations that were presented in other sections of Chapter 5. These would improve
the performance of the system considerably and deserve further investigation. The gar-
bage collector used in our system is a traditional mark and sweep collector. These are
largely passé nowadays and further research in more efficient collectors should be pur-
sued. Such a new collector should also try to optimize the memory used for storing the
sharing state. The amount of memory used to store sharing state is currently the
greatest deficiency of the system. Given the strong interest in the secure JVM work, it
would be beneficial to explore a reimplementation on a traditional UNIX operating sys-
tem rather than our extensible operating system.

Finally, during the many discussions about this work it became clear that reduc-
ing complexity is an amazingly misunderstood property of secure systems. Security is
not just a matter of functional correctness, it is also a matter of managing software
complexity to reduce the number of implementation errors. Given the current state of
software engineering practice, minimizing the TCB is the only successful tool at hand.
This is not a new observation; Anderson suggested minimizing the TCB nearly thirty
years ago [Anderson, 1972] and the Department of Defense Orange Book series
[Department of Defense, 1985] requires minimizing the TCB for B3 and higher sys-
tems.

188 Conclusions CHAPTER 7

7.5. System Performance
In Chapter 6 we took a closer look at some of the performance issues of our sys-

tem. We constructed a number of (micro) benchmarks, we measured their performance
on our experimental hardware, and we used our simulator to explain the results. The
main conjecture in that chapter was that microbenchmarks are typically bad indicators
for the end-to-end application performance. We showed that this was true for our
benchmarks on our experimentation platform because there are too many sources for
performance indeterminacy, such as register windows, cache and TLB behavior, to
accurately extrapolate the microbenchmarks results. Of course, our platform exacer-
bates the problem of performance indeterminacy because it has an exceptionally small
cache. Modern machine have much bigger and multi-way set associative caches which
have much better cache behavior, but even here extrapolating microbenchmark results
is typically not a good indication for system performance because multiple cooperating
applications have very erratic cache and TLB behavior. Accurate whole system
evaluation is a fruitful area of further research.

7.6. Retrospective
In this thesis we have described the design and some applications of a new

operating system. In this section we will briefly look back at the development process
and discuss some of the lessons learned.

The hardest part of designing Paramecium was to decide what the abstractions
provided by the kernel should be. There was a high-level scientific goal we wanted to
achieve, exploring extensible systems, and various technical goals such as a minimal
kernel whose primary function is to preserve the integrity of the system and an event
driven architecture. The latter was motivated by the desire to experiment with a com-
pletely asynchronous system after our experiences with Amoeba [Tanenbaum et al.,
1991], a completely synchronous system. We briefly experimented with a number of
different primitives but very quickly decided on the ones described in Chapter 3. Once
the primitives were set, we started building applications on top of them. Changing the
primitives became a constant tension of making tradeoffs between the time it took to
work around a particular quirk and the time it took to redo the primitive and all the
applications that used it. An example of this is the event mechanism. Events do not
block and when there is no event handler available the event invocation fails with an
error. The appropriate way of handling this would be to generate an upcall when a
thread is about to block and another upcall when a handler becomes available (i.e., use
scheduler activation [Anderson et al., 1991] techniques). Timewise, however, it was
much more convenient to fix the problem by overcommitting resources and allocate
more handlers than necessary. The lesson here is that it is important to decide quickly
on a set of kernel abstractions and primitives and validate them by building applica-
tions on them but be prepared to change them. Hence it is all right to cut corners, but it
should be done sparingly. The most important thing, however, is to realize that an
operating system is just a means not the end result.

SECTION 7.6 Retrospective 189

In retrospect, the decision to use the SPARC platform was unfortunate for multi-
ple reasons. The platform is expensive and therefore not readily available, and the ven-
dor was initially not forthcoming with the necessary information to build a kernel. This
resulted in a fair amount of reverse engineering, time that would have been better spent
on building the actual system itself. The SPARC platform was only truly understood
once the author had written his SPARC architecture simulator. Closely associated with
the simulator is the issue of a fast IPC implementation using register windows. The
problem here was that a lot of time was spent on optimizing the IPC path too early in
the process. That is, the event primitive was still in a state of flux and, more important,
we had no application measurements to warrant these optimizations. The lesson here is
that it is better to use a popular platform for which the vendor is willing to supply the
necessary information, and to wait with optimizing operations until applications indi-
cate that there is a problem that needs to be fixed. It is more important to determine the
right primitives first whose design, of course, should not have any inherent perfor-
mance problems.

Reusing existing implementations turned out to be a mixed blessing. We did not
adopt a lot of external code, most of it was written ourself. Some of the code we did
adopt, such as the Xinu TCP/IP implement, required a major overhaul to adapt it to our
thread and preemptive event model. In the end it was unclear whether the time spent
debugging was less than writing a new stack from scratch. Another reason to be wary
of using external code is that it is much less well understood and therefore makes
debugging harder. The lesson here is that you should only adopt code that closely fol-
lows the abstractions provided by the kernel or requires minimal adaptation. Hence, be
prepared to write your own code if the external code does not match your abstraction.
Do not change your abstractions or primitives to accommodate the external code unless
you are convinced the changes have much wider applicability.

For the development of our system extensions and applications we found the
absence of high-level abstractions very refreshing. Our low-level abstractions allowed
us to rethink basic systems issues and enabled applications and extensions that would
be very hard to express on other systems. Of course, our applications were low-level
language run-time systems and therefore probably benefited most from our Parame-
cium abstractions. Perhaps this is the most important lesson of them all, extensible ker-
nels allow us to revisit abstractions that were set almost thirty years ago with Multics
[Organick, 1972].

7.7. Epilogue
The goal of this thesis was to show the usefulness of an extensible operating sys-

tem by studying its design, implementation and some key applications. By doing so,
we made the following major research contributions:

� A simple object model that combines interfaces, objects, and an object
instance naming scheme for building extensible systems.

190 Conclusions CHAPTER 7

� An extensible, event-driven operating system that uses digital signatures to
extend kernel boundaries while preserving safety guarantees.

� A new Java virtual machine which uses hardware fault isolation to separate
Java classes transparently and efficiently.

In addition, we also made the following minor contributions:
� A migrating thread package with efficient cross protection domain synchroni-

zation state sharing.
� An efficient cross protection domain shared buffer system.
� An active filter mechanism to support filter based event demultiplexing.
� An extensible parallel programming system.
� An object based group communication mechanism using active messages.
� A detailed analysis of IPC and context switch paths encompassing the kernel,

system extensions, and applications.

In this thesis we demonstrated that our extensible operating system enabled a
number of system extensions and applications that are hard or impossible to implement
efficiently on traditional operating systems, thereby showing the usefulness of an
extensible operating system.

SECTION 7.7 Epilogue 191

Appendix A
Kernel Interface Definitions

This appendix provides the Interface Definition Language (IDL) specifications
for Paramecium’s base kernel interfaces as described in Chapter 3. Interface defini-
tions are written in a restricted language consisting of type and constant definitions
together with attributes to specify semantic behavior. The IDL generator takes an
interface definition and generates stubs for a particular target language. The current
generator supports two target languages, C and C++.

The Paramecium interface generator combines two different functions. In addi-
tion to generating interface stubs, it also generates object stubs. Objects stubs are gen-
erated from an Object Definition Language (ODL) which is a super set of the interface
definition language. An object definition describes the interfaces that are exported by
the object and their actual method implementations. The object generator aids the pro-
grammer in defining new objects.

A.1 Interface Definitions
The interface definition language uses the same declaration definition syntax as

defined in the C programming language [International Standard Organization, 1990].
This appendix only describes the IDL specific enhancements and refers to either the C
standard or [Kernighan and Ritchie, 1988] for C specific definitions. The syntax defin-
itions are specified in an idealized form of an extended LL(1) grammar [Grune and
Jacobs, 1988].

Identifiers are defined similarly to those in the ANSI C standard. In addition to
the ANSI C keywords, the interface and nil keywords are also reserved. Comments are
introduced either by a slash-slash (‘‘//’’) token and extend up to a new-line character or
are introduced by a slash-star (‘‘/*’’) token and extend up to a closing star-slash (‘‘*/’’)
token as in ANSI C.

The IDL grammar extends the ANSI C grammar with a new aggregate type
representing interfaces. An interface declaration consists of an enumeration of abstract
function declarators, describing the type of each method.

192

interface_type:

interface identifier interface_def?

interface_def:

{ [base_type declarator ;]+ } [= number]?

Interfaces are uniquely numbered. This number is chosen by the interface
designer and should capture its syntax and semantics since it is used as a primitive form
of type checking at interface binding time.

For the programmer’s convenience, arguments to method declarations may have
auto initializers. These either consist of a scalar value or the keyword nil. The latter
represents an untyped null reference.

argument:

base_type abstract_declarator [= [number | nil]]?

A.2 Base Kernel Interfaces
The types used in the following interface definitions are listed in the table below.

Most kernel resources are identified by a 64-bit resource identifier, and are represented
by the type resid_t. A naming context is a resource identifier also but for clarity its
type is nsctx_t. Physical and virtual addresses are represented by the types paddr_t and
vaddr_t, respectively. The ANSI C type size_t denotes the size of a generic object.

� ���

Type Size (in bits) Description� �� ���

resid_t 64 Generic resource identifier
� ���

nsctx_t 64 Naming context
� ���

paddr_t 32 Physical memory address
� ���

vaddr_t 32 Virtual memory address
� ���

size_t 32 Size (in bytes)
� ���
�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�
�
�
�

A.2.1 Protection Domains

interface context {
resid_t create(resid_t name, nsctx_t nsc); // create new context
void destroy(resid_t ctxid); // destroy context
int setfault(resid_t ctxid, // set fault event handler

int fault, resid_t evid);
void clrfault(resid_t ctxid, // clear fault event handler

int fault);
} = 7;

Kernel Interface Definitions 193

A.2.2 Virtual and Physical Memory

interface physmem {
resid_t alloc(void); // allocate one physical page
paddr_t addr(resid_t pp); // physical address
void free(resid_t pp); // free page

} = 5;

enum accmode { R, RW, RX, RWX, X };
enum attribute { ACCESS, CACHE };

interface virtmem {
vaddr_t alloc(resid_t ctxid, // allocate virtual space

vaddr_t vhint,
size_t vsize, accmode acc,
resid_t *ppids, int npps, resid_t evid);

void free(resid_t ctxid, // free virtual space
vaddr_t start, size_t size);

uint32_t attr(resid_t ctxid, // set page attributes
vaddr_t start, size_t size,
attribute index, uint32_t attr);

resid_t phys(resid_t ctxid, vaddr_t); // get physical page
resid_t range(resid_t ctxid, // get range identifier

vaddr_t va, size_t size);
} = 6;

A.2.3 Thread of Control

interface event {
resid_t create(resid_t evname); // create new event
void enable(resid_t id); // enable events
void disable(resid_t id); // disable events
void destroy(resid_t evid); // destroy event
resid_t reg(resid_t evname, // register a new handler

resid_t ctxid, void (*method)(...),
vaddr_t stk, size_t stksize);

void unreg(resid_t evhid); // unregister a handler
int invoke(resid_t evid, // invoke event

void *ap = 0, size_t argsiz = 0);
void branch(resid_t evid, // branch to event

void *ap = 0, size_t argsiz = 0);
vaddr_t detach(vaddr_t newstk, // detach current stack

size_t newstksize);
} = 4;

194 APPENDIX A

interface chain {
resid_t create(resid_t ctxid, vaddr_t pc, // create a new chain

vaddr_t stk, size_t stksiz,
void *ap = 0, size_t argsiz = 0, vaddr_t sp = 0);

resid_t self(void); // obtain current chain id
void swap(resid_t cid); // swap to another chain
void destroy(resid_t cid); // destroy chain

} = 8;

A.2.4 Naming and Object Invocations

interface ns {
interface soi bind(nsctx_t nsctx, char *name);
interface soi reg(nsctx_t nsctx, char *name, void *ifp);
interface soi map(nsctx_t nsctx,

char *name, char *file, resid_t where = 0);
void unbind(nsctx_t nsctx, void *ifp);
void del(nsctx_t nsctx, char *name);
int override(nsctx_t nsctx, char *to, char *from);
nsctx_t context(nsctx_t nsctx, char *name);

int status(nsctx_t nsctx, nsstatus_t *nsbuf);
nsctx_t walk(nsctx_t nsctx, int options);

} = 3;

A.2.5 Device Manager

interface device {
int nreg(void); // # of device registers
vaddr_t reg(vaddr_t vhint, int index);
int nintr(void); // # of device interrupts
resid_t intr(int index);
vaddr_t map(vaddr_t va, int size);
void unmap(vaddr_t va, int size);
int property(char *name, void *buffer, int size);

} = 9;

Notes
The IDL generator was designed and implemented by Philip Homburg. It was
adapted by the author to include a C++ target, object definitions (ODL), and some

minor extensions to take advantage of the C++ programming language.

Kernel Interface Definitions 195

Bibliography

Accetta, M., Baron, R., Golub, D., Rashid, R., Tevanian, A., and Young, M., Mach: A
New Kernel Foundation for UNIX Development, Proc. of the Summer 1986
USENIX Technical Conf. and Exhibition, Atlanta, GA, June 1986, 93-112.

Agarwal, A., Kubiatowicz, J., Kranz, D., Lim, B., Yeung, D., D’Souza, G., and Parkin,
M., Sparcle: An Evolutionary Processor Design for Large-Scale
Multiprocessors, IEEE Micro 13, 3 (June 1993), 48-61, IEEE.

Aho, A. V., Sethi, R., and Ullman, J. D., Compilers, Principles, Techniques, and Tools,
Addison Wesley, Reading, MA, 1986.

Ahuja, S., Carriero, N., and Gelernter, D., Linda and Friends, Computer 19, 8 (Aug.
1986), 26-34.

Anderson, J. P., Computer Security Technology Planning Study, ESD-Tech. Rep.-73-
51, Vols. I and II, HQ Electronic Systems Division, Hanscom Air Force Base,
MA, Oct. 1972.

Anderson, T. E., Lazowska, D. D., and Levy, H. M., The Performance Implications of
Thread Management Alternatives for Shared-memory Multiprocessors, Proc. of
the ACM SIGMETRICS International Conf. on Measurement and Modeling of
Computer Systems, Oakland, CA, May 1989, 49-60.

Anderson, T. E., Bershad, B. N., Lazowska, E. D., and Levy, H. M., Scheduler
Activations: Effective Kernel Support for the User-Level Management of
Parallelism, Proc. of the 13th Symp. on Operating System Principles, Pacific
Grove, CA, Oct. 1991, 95-109.

Anderson, T. E., The Case for Application Specific Operating Systems, Third
Workshop on Workstation Operating Systems, Key Biscayne, FL, 1992, 92-94.

Andrews, G. R. and Olsson, R. A., The SR Programming Language: Concurrency in
Practice, Benjamin/Cummings, Redwood City, CA, 1993.

Aridor, Y., Factor, M., and Teperman, A., cJVM: A Single System Image of a JVM on
a Cluster, Proc. of the 1999 IEEE International Conf. on Parallel Processing
(ICPP’99), Aizu-Wakamatsu City, Japan, Sept. 1999, 4-11.

Arnold, J. Q., Shared Libraries on UNIX System V, in USENIX Conf. Proc., USENIX,
Atlanta, GA, Summer 1986, 395-404.

196

Arnold, K. and Gosling, J., The Java Programming Language, Addison Wesley,
Reading, MA, Second edition, 1997.

Back, G., Tullman, P., Stoller, L., Hsieh, W. C., and Lepreau, J., Java Operating
Systems: Design and Implementation, Tech. Rep. UUCS-98-015, School of
Computing, University of Utah, Aug. 1998.

Backus, J. W., Bauer, F. L., Green, J., Katz, C., McCarthy, J., Naur, P., Perlis, A. J.,
Rutishauser, H., Samuelson, K., Vauquois, B., Wegstein, J. H.,
van Wijngaarden, A., and Woodger, M., Revised Report on the Algorithmic
Language Algol 60, 1960.

Bal, H. E., The shared data-object model as a paradigm for programming distributed
systems, PhD Thesis, Department of Mathematics and Computer Science, Vrije
Universiteit, Amsterdam, Holland, Oct. 1989.

Bal, H. E., Programming Distributed Systems, Prentice Hall, Englewood Cliffs, NJ,
1991.

Bal, H. E., Kaashoek, M. F., and Tanenbaum, A. S., Orca: A Language for Parallel
Programming on Distributed Systems, IEEE Transactions on Software
Engineering 18, 3 (Mar. 1992), 190-205.

Bal, H. E., Bhoedjang, R. A. F., Hofman, R., Jacobs, C., Langendoen, K. G., Rühl, T.,
and Kaashoek, M. F., Orca: A Portable User-Level Shared Object System, IR-
408, Department of Mathematics and Computer Science, Vrije Universiteit,
July 1996.

Bal, H. E., Bhoedjang, R. A. F., Hofman, R., Jacobs, C., Langendoen, K. G., and
Verstoep, K., Performance of a High-Level Parallel Language on a High-Speed
Network, Journal of Parallel and Distributed Computing, Jan. 1997.

Barnes, J. G. P., Programming in Ada, Addison Wesley, Reading, MA, Third edition,
1989.

Barrera III, J. S., A Fast Mach Network IPC Implementation, Proc. of the Usenix Mach
Symp., Monterey, CA, Nov. 1991, 1-11.

Bedichek, R. C., Some Efficient Architecture Simulation Techniques, Proc. of the
Usenix Winter ’90 Conf., Washington, D.C, Jan. 1990, 53-63.

Ben−Ari, M., Principles of Concurrent and Distributed Programming, Prentice Hall,
Englewood Cliffs, NJ, 1990.

Bernadat, P., Lambright, D., and Travostino, F., Towards a Resource-safe Java for
Service Guarantees in Uncooperative Environments, Proc. of the 19th IEEE
Real-time Systems Symp. (RTSS’98), Madrid, Spain, Dec. 1998.

Berners-Lee, T., Fielding, R., and Frystyk, H., Hypertext Transfer Protocol −
HTTP/1.0, RFC-1945, May 1996.

Bershad, B. N., Anderson, T. E., Lazowska, E. D., and Levy, H. M., Lightweight
Remote Procedure Call, Proc. of the 12th Symp. on Operating System
Principles, Litchfield Park, AZ, Dec. 1989, 102-113.

Bershad, B. N., Redell, D. D., and Ellis, J. R., Fast Mutual Exclusion for

Bibliography 197

Uniprocessors, Proc. of the Symp. on Architectural Support for Programming
Languages and Operating Systems, Boston, MA, Sept. 1992, 223-233.

Bershad, B. N., Zekauskas, M. J., and Sawdon, W. A., The Midway Distributed Shared
Memory System, Proc. of Compcon 1993, San Francisco, CA, Feb. 1993, 528-
537.

Bershad, B. N., Chambers, C., Eggers, S., Maeda, C., McNamee, D., Pardyak, P.,
Savage, S., and Sirer, E. G., SPIN − An Extensible Microkernel for
Application-specific Operating System Services, Proc. of the Sixth SIGOPS
European Workshop, Wadern, Germany, Sept. 1994, 68-71.

Bershad, B. N., Savage, S., Pardyak, P., Becker, D., Fiuczynski, M., and Sirer, E. G.,
Protection is a Software Issue, Proc. of the Fifth Hot Topics in Operating
Systems (HotOS) Workshop, Orcas Island, WA, May 1995, 62-65.

Bershad, B. N., Savage, S., Pardyak, P., Sirer, E. G., Fiuczynski, M. E., Becker, D., and
Chambers, C., Extensibility, Safety and Performance in the SPIN Operating
System, Proc. of the 15th Symp. on Operating System Principles, Copper
Mountain Resort, CO, Dec. 1995, 267-284.

Bhatti, N. T. and Schlichting, R. D., A System For Constructing Configurable High-
Level Protocols, Proc. of the SIGCOMM Symp. on Communications
Architectures and Protocols, Cambridge, MA, Aug. 1995, 138-150.

Birrell, A., Nelson, G., Owicki, S., and Wobber, E., Network Objects, Proc. of the 14th
Symp. on Operating System Principles, Ashville, NC, Dec. 1993, 217-230.

Bishop, M., The Transfer of Information and Authority in a Protection System, Proc. of
the Seventh Symp. on Operating System Principles, Dec. 1979, 45-54.

Black, G., Hsieh, W. C., and Lepreau, J., Processes in KaffeOS: Isolation, Resource
Management, and Sharing in Java, Proc. of the Fourth USENIX Symp. on
Operating Systems Design and Implementation, San Diego, CA, Oct. 2000,
333-346.

Boebert, W. E., On the Inability of an Unmodified Capability Machine to Enforce the
*-property, Proc. of the 7th DoD/NBS Computer Security Conference,
Gaithersburg, MD, Sept. 1984, 291-293.

Boehm, B. W., Software Engineering Economics, Prentice Hall, Englewood Cliffs, NJ,
1981.

Boehm, H. and Weiser, M., Garbage Collection in an Uncooperative Environment,
Software—Practice & Experience 18, 9 (1988), 807-820.

Bonneau, C. H., Security Kernel Specification for a Secure Communication Processor,
ESD-Tech. Rep.-76-359, Electronic Systems Command, Hanscom Air Force
Base, MA, Sept. 1978.

Broadbridge, R. and Mekota, J., Secure Communications Processor Specification,
ESD-Tech. Rep.-76-351, Vol. II, Electronic Systems Command, Hanscom Air
Force Base, MA, June 1976.

Brooks, F. P., The Mythical Man−month, Essays on Software Engineering, Addison
Wesley, Reading, MA, 1972.

198 Bibliography

Burns, A. and Wellings, A., Real-time Systems and their Programming Languages,
Addison Wesley, Reading, MA, 1990.

Burroughs, The Descriptor − a Definition of the B5000 Information Processing System,
Burroughs Corporation, Detroit, MI, 1961.

Campbell, R. H., Johnson, G., and Russo, V., Choices (Class Hierarchical Open
Interface for Custom Embedded Systems), ACM Operating Systems Review 21,
3 (July 1987), 9-17.

Campbell, R. H., Islam, N., Johnson, R., Kougiouris, P., and Madany, P., Choices,
Frameworks and Refinement, Proc. of the International Workshop on Object
Orientation in Operating Systems, Palo Alto, CA, Oct. 1991, 9-15.

Canon, M. D., Fritz, D. H., Howard, J. H., Howell, T. D., Mitoma, M. E., and
Rodriquez-Rosell, J., A Virtual Machine Emulator for Performance Evaluation,
Proc. of the Seventh Symp. on Operating System Principles, Dec. 1979, 71-80.

Cerf, V. G. and Kahn, R. E., A Protocol for Packet Network Interconnection, TRANS
on Communications Technology 22, 5 (May 1974), 627-641.

Chase, J. S., Levy, H. M., Feeley, M. J., and Lazowska, E. D., Sharing and Protection
in a Single-address-space Operating System, ACM Transactions on Computer
Systems 12, 4 (Nov. 1994), 271-307.

Cheriton, D. R., The V Distributed System, Comm. of the ACM 31, 3 (Mar. 1988),
314-333.

Clark, R. and Koehler, S., The UCSD Pascal Handbook, Prentice Hall, Englewood
Cliffs, NJ, 1982.

Colwell, R. P., The Performance Effects of Functional Migration and Architectural
Complexity in Object-Oriented Systems, CMU, PhD Thesis, Department of
Computer Science, CMU, Pittsburgh, PA, Aug. 1985.

Comer, D. E. and Stevens, D. L., Internetworking with TCP/IP, Volume II: Design,
Implementation, and Internals, Prentice Hall, Englewood Cliffs, NJ, Second
edition, 1994.

Common Criteria, Common Criteria Documentation, (available as http://csrc.nist.gov/

cc), 2000.
Custer, H., Inside Windows NT, Microsoft Press, Redmond, WA, 1993.
Dahl, O. J. and Nygaard, K., SIMULA − An Algol-based simulation language, Comm.

of the ACM 9 (1966), 671-678.
Daley, R. C. and Dennis, J. B., Virtual Memory, Process, and Sharing in Multics,

Comm. of the ACM 11, 5 (May 1968), 306-312.
Dasgupta, P. and Ananthanarayanan, R., Distributed Programming with Objects and

Threads in the Clouds System, USENIX Computing Systems 4, 3 (1991), 243-
275.

Dean, D., Felten, E. W., and Wallach, D. S., Java Security: From HotJava to Netscape
and Beyond, Proc. of the IEEE Security & Privacy Conf., Oakland, CA, May
1996, 190-200.

Bibliography 199

Dennis, J. B. and Van Horn, E. C., Programming Semantics for Multiprogrammed
Computations, Comm. of the ACM 9, 3 (Mar. 1966), 143-155.

Department of Defense, Trusted Computer System Evaluation Criteria, DoD 5200.28-
STD, National Computer Security Center, Ft. Meade, MD, Dec. 1985.

Des Places, F. B., Stephen, N., and Reynolds, F. D., Linux on the OSF Mach3
microkernel, Conf. on Freely Distributable Software, Boston, MA, Feb. 1996.

Deutsch, L. P., Design Reuse and Frameworks in the Smalltalk-80 System, in Software
Reusability, Volume II: Applications and Experience, Addison Wesley,
Reading, MA, 1989, 57-71.

Dijkstra, E. W., Cooperating Sequential Processes, Academic Press, New York, 1968.
Dijkstra, E. W., The Structure of the ‘‘THE’’-Multiprogramming System, Comm. of

the ACM 11, 5 (May 1968), 341-346.
Dijkstra, E. W., Lamport, L., Martin, A. J., Scholten, C. S., and Steffens, E. F., On-

the-fly Garbage Collection: An Exercise in Cooperation, Comm. of the ACM 21,
11 (Nov. 1978), 965-975.

Dimitrov, B. and Rego, V., Arachne: A Portable Threads System Supporting Migrant
Threads on Heterogeneous Network Farms, IEEE Transactions on Parallel and
Distributed Systems 9, 5 (May 1998), 459-469.

Doligez, D. and Gonthier, G., Portable Unobtrusive Garbage Collection for
Multiprocessor Systems, Proc. of the 21st Annual ACM SIGPLAN Notices
Symp. on Principles of Programming Languages, Jan. 1994, 70-83.

Dorward, S., Presotto, D., Trickey, H., Pike, R., Ritchie, D., and Winterbottom, P.,
Inferno, Proc. of Compcon 1997, Los Alamitos, CA, Feb. 1997, 241-244.

Druschel, P. and Peterson, L., High-Performance Cross-Domain Data Transfer, Tech.
Rep. 92-11, Department of Computer Science, University of Arizona, Mar. 30,
1992.

Druschel, P. and Peterson, L., Fbufs: A High-bandwidth Cross Domain Transfer
Facility, Proc. of the 14th Symp. on Operating System Principles, Ashville, NC,
Dec. 1993, 189-202.

Eide, E., Frei, K., Ford, B., Lepreau, J., and Lindstrom, G., Flick: A flexible,
optimizing IDL compiler, Proc. of the ACM SIGPLAN Notices ’97 Conf. on
Programming Language Design and Implementation (PLDI), Las Vegas, NV,
June 1997, 44-56.

England, D. M., Capability, Concept, Mechanism and Structure in System 250,
RAIRO-Informatique (AFCET) 9 (Sept. 1975), 47-62.

Engler, D., Chelf, B., Chou, A., and Hallem, S., Checking System Rules Using
System-Specific, Programmer-Written Compiler Extensions , Proc. of the
Fourth USENIX Symp. on Operating Systems Design and Implementation, San
Diego, CA, Oct. 2000, 1-16.

Engler, D. R., Kaashoek, M. F., and O’Toole Jr., J., The Operating Systems Kernel as a
Secure Programmable Machine, Proc. of the Sixth SIGOPS European
Workshop, Wadern, Germany, Sept. 1994, 62-67.

200 Bibliography

Engler, D. R., Kaashoek, M. F., and O’Toole Jr., J., Exokernel: An Operating System
Architecture for Application-Level Resource Management, Proc. of the 15th
Symp. on Operating System Principles, Copper Mountain Resort, CO, Dec.
1995, 251-266.

Engler, D. R. and Kaashoek, M. F., DPF: Fast, Flexible Message Demultiplexing using
Dynamic Code Generation, Proc. of the SIGCOMM’96 Conf. on Applications,
Technologies, Architectures and Protocols for Computer Communication, Palo
Alto, CA, Aug. 1996, 53-59.

Engler, D. R., VCODE: A Retargetable, Extensible, Very Fast Dynamic Code
Generation System, Proc. of the ACM SIGPLAN Notices ’96 Conf. on
Programming Language Design and Implementation (PLDI), 1996, 160-170.

Esmertec, Jbed Whitepaper: Component Software and Real-Time Computing, White
paper, Esmertec, 1998. (available as http://www.jbed.com).

Felten, E., Java’s Security History, (available as http://www.cs.princeton.edu/sip/

history.html), 1999.
Fitzgerald, R. and Rashid, R. F., The Integration of Virtual Memory Management and

Interprocess Communication in Accent, ACM Transactions on Computer
Systems 4, 2 (May 1986), 147-177.

Ford, B. and Lepreau, J., Evolving Mach 3.0 to a Migrating Thread Model, Proc. of the
Usenix Winter ’94 Conf., San Francisco, CA, Jan. 1994, 97-114.

Ford, B., Hibler, M., Lepreau, J., Tullmann, P., Back, G., and Clawson, S.,
Microkernels Meet Recursive Virtual Machines, Proc. of the Second USENIX
Symp. on Operating Systems Design and Implementation, Seattle, WA, Oct.
1996, 137-151.

Ford, B., Back, G., Benson, G., Lepreau, J., Lin, A., and Shivers, O., The Flux OSKit:
A Substrate for Kernel and Language Research, Proc. of the 16th Symp. on
Operating System Principles, Saint-Malo, France, Oct. 1997, 38-51.

Fujitsu Microelectronics Inc., SPARCLite Embedded Processor User’s Manual, Fujitsu
Microelectronics Inc., 1993.

Gabber, E., Small, C., Bruno, J., Brustoloni, J., and Silberschatz, A., Building Efficient
Operating Systems from User-Level Components in Pebble, Proc. of the
Summer 1999 USENIX Technical Conf., 1999, 267-282.

Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design Patterns Elements of
Reusable Object-oriented Software, Addison Wesley, Reading, MA, 1995.

Ghezzi, C. and Jazayeri, M., Programming Language Concepts, John Wiley & Sons,
New York, NY, Second edition, 1987.

Goldberg, A. and Robson, D., Smalltalk-80: The Language and its Implementation,
Addison Wesley, Reading, MA, 1983.

Goodheart, B. and Cox, J., The Magic Garden Explained The Internals of UNIX System
V Release 4 and Open System Design, Prentice Hall, Englewood Cliffs, NJ,
1994.

Bibliography 201

Gosling, J., Joy, B., and Steele, G., The Java Language Specification, Addison Wesley,
Reading, MA, 1996.

Graham, I., Object Oriented Methods, Addison Wesley, Reading, MA, 1993.
Grune, D. and Jacobs, C. J. H., A Programmer-friendly LL(1) Parser Generator,

Software − Practice and Experience 18, 1 (Jan. 1988), 29-38.
Guthery, S. B. and Jurgensen, T. M., Smart Card Developer’s Kit, Macmillian

Technical Publishing, Indianapolis, IN, 1998.
Härtig, H., Hohmuth, M., Liedtke, J., Schönberg, S., and Wolter, J., The Performance

of µ-Kernel-Based Systems, Proc. of the 16th Symp. on Operating System
Principles, Saint-Malo, France, Oct. 1997, 66-77.

Habert, S., Mosseri, L., and Abrossimov, V., COOL: Kernel Support for Object-
oriented Environments, Proc. on ECOOP/Object-Oriented Programming
Systems, Languages and Applications, Ottawa, Canada, Oct. 1990, 269-277.

Halbert, D. C. and Kessler, P. B., Windows of Overlapping Register Frames, CS 292R
Final Reports, June 1980, 82-100.

Handy, J., The Cache Memory Book, Academic Press, 1993.
Hardy, N., The KeyKOS Architecture, ACM Operating Systems Review, Oct. 1995, 8-

25.
Harrison, M. A., Ruzzo, W. L., and Ullman, J. D., Protection in Operating Systems,

Comm. of the ACM 19, 8 (Aug. 1976), 461-471.
Hawblitzel, C., Chang, C., Czajkowski, G., Hu, D., and Von Eicken, T., Implementing

Multiple Protection Domains in Java, Proc. of the 1998 USENIX Annual
Technical Conf., New Orleans, LA, June 1998, 259-270.

Hennessy, J., Goldberg, D., and Patterson, D. A., Computer Architecture a Quantitative
Approach, Morgan Kaufmann Publishers Inc., Second edition, 1996.

Hewitt, C., Viewing Control Structures as Patterns of Passing Messages, MIT AI Lab
Memo 410, MIT, Dec. 1976.

Hildebrand, D., An Architectural Overview of QNX, Proc. of the USENIX Workshop
on Micro-kernels and Other Kernel Architectures, Seattle, WA, Apr. 1992,
113-116.

Homburg, P., The Architecture of a Worldwide Distributed System, PhD Thesis,
Department of Mathematics and Computer Science, Vrije Universiteit,
Amsterdam, Holland, Mar. 2001.

Homburg, P., Van Doorn, L., Van Steen, M., and Tanenbaum, A. S., An Object Model
for Flexible Distributed Systems, Proc. of the First ASCI Conf., Heijen, The
Netherlands, May 1995, 69-78.

Hopcroft, J. E. and Ullman, J., Introduction to Automata Theory, Languages and
Computation, Addison Wesley, Reading, MA, 1979.

Hsieh, W. C., Kaashoek, M. F., and Weihl, W. E., The Persistent Relevance of IPC
Performance: New techniques for Reducing the IPC Penalty, Proc. Fourth
Workshop on Workstation Operating Systems, Napa, CA, Oct. 1993, 186-190.

Hsieh, W. C., Johnson, K. L., Kaashoek, M. F., Wallach, D. A., and Weihl, W. E.,

202 Bibliography

Efficient Implementation of High-Level Languages on User-Level
Communication Architectures, MIT/LCS/Tech. Rep.-616, May 1994.

Hutchinson, N. C., Peterson, L. L., Abbott, M. B., and O’Malley, S., RPC in the x-
kernel: Evaluating New Design Techniques, Proc. of the 12th Symp. on
Operating System Principles, Litchfield Park, AZ, Dec. 1989, 91-101.

IEEE, Standard for Boot Firmware, 1275, IEEE, Piscataway, NJ, 1994.
IEEE, American National Standards Institute/IEEE Std 1003.1, ISO/IEC 9945-1, IEEE,

Piscataway, NJ, 1996.
Ingals, D. H. H., The Smalltalk-76 Programming System: Design and Implementation,

5th ACM Symp. on Principles of Programming Languages, Tucson, AZ, 1978,
9-15.

International Standard Organization, Programming Language C, 9899, ISO/IEC, 1990.
Jaeger, T., Liedtke, J., Panteleenko, V., Park, Y., and Islam, N., Security Architecture

for Component-based Operating Systems, Proc. of the Eighth ACM SIGOPS
European Workshop, Sintra, Portugal, 1998, 222-228.

Johnson, K. L., Kaashoek, M. F., and Wallach, D. A., CRL: high-performance all-
software distributed shared memory, Proc. of the 15th Symp. on Operating
System Principles, Copper Mountain Resort, CO, Dec. 1995, 213-226.

Jones, M. B., Interposing Agents: Transparently Interposing User Code at the System
Interface, Proc. of the 14th Symp. on Operating System Principles, Ashville,
NC, Dec. 1993, 80-93.

Jones, R. and Lins, R., Garbage Collection, Algorithms for Automatic Dynamic
Memory Management, John Wiley & sons, New York, 1996.

Kaashoek, M. F. and Tanenbaum, A. S., Group Communication in the Amoeba
Distributed Operating System, Proc. of the 11th IEEE Symp. on Distributed
Computer Systems, Arlington, TX, May 1991, 222-230.

Kaashoek, M. F., Group communication in distributed computer systems, PhD Thesis,
Department of Mathematics and Computer Science, Vrije Universiteit,
Amsterdam, Holland, 1992.

Kaashoek, M. F., (personal communication), 1997.
Kaashoek, M. F., Engler, D. R., Ganger, G. R., Briceño, H., Hunt, R., Mazières, D.,

Pinckney, T., Grimm, R., Janotti, J., and Mackenzie, K., Application
Performance and Flexibility on Exokernel Systems, Proc. of the 16th Symp. on
Operating System Principles, Saint-Malo, France, Oct. 1997, 52-65.

Karger, P. A. and Herbert, A. J., An Augmented Capability Architecture to Support
Lattice Security and Traceability of Access, Proc. of the IEEE Security &
Privacy Conf., Oakland, CA, Apr. 1984, 2-12.

Karger, P. A., Improving Security and Performance for Capability Systems, PhD
Thesis, University of Cambridge Computer Laboratory, Cambridge, England,
Oct. 1988.

Keleher, P., Cox, A. L., Dwarkadas, S., and Zwaenepoel, W., Tread Marks: Distributed

Bibliography 203

Shared Memory on Standard Workstations and Operating Systems, Proc. of the
USENIX Winter 1994 Technical Conf., Jan. 1994, 115-131.

Keppel, D., Tools and Techniques for Building Fast Portable Threads Packages, Tech.
Rep. 93-05-06, University of Washington, CSE, 1993.

Kernighan, B. W. and Ritchie, D. M., The C Programming Language, Prentice Hall,
Englewood Cliffs, NJ, 1988.

Kilburn, T., Edwards, D. B. G., Lanigan, M. J., and Sumner, F. H., One-Level Storage
System, IEEE Transactions on Electronic Computers EC-11, 2 (Apr. 1962),
223-235.

Korf, R., Depth-First Iterative-Deepening: An Optimal Admissible Tree Search,
Artificial Intelligence, 1985, 97-109.

Kronenberg, N., Benson, T. R., Cardoza, W. M., Jagannathan, R., and Thomas, B. J.,
Porting OpenVMS from VAX to Alpha AXP, Comm. of the ACM 36, 2 (Feb.
1993), 45-53.

Krueger, K., Loftesness, D., Vahdat, A., and Anderson, T., Tools for the development
of application-specific virtual memory management, Proc. on Object-Oriented
Programming Systems, Languages and Applications, Washington, DC, Oct.
1993, 48-64.

Kung, H. T. and Song, S. W., An efficient parallel garbage collection system and its
correctness proof, IEEE Symp. on Foundations of Computer Science, 1977,
120-131.

Lamport, L., How to Make a Multiprocessor Computer That Correctly Executes
Multiprocess Programs, Transactions on Computers 9, 28 (Sept. 1979), 690-
691, IEEE.

Lampson, B., Pirtle, M., and Lichtenberger, W., A User Machine in a Time-sharing
System, Proc. IEEE 54, 12 (Dec. 1966), 1766-1774.

Lampson, B., A Note on the Confinement Problem, Comm. of the ACM 16, 10 (Oct.
1973), 613-615.

Lampson, B., Protection, Operating Systems Review 8, 1 (Jan. 1974), 18-24.
Langendoen, K., (personal communication), 1997.
Lauer, H. C., Observations on the Development of Operating Systems, Proc. of the

Eighth Symp. on Operating System Principles, Pacific Grove, CA, Dec. 1981,
30-36.

Lea, R., Yokote, Y., and Itho, J., Adaptive Operating System Design Using Reflection,
Proc. of the Fifth Hot Topics in Operating Systems (HotOS) Workshop, Orcas
Island, WA, May 1995, 95-105.

Levy, H. M., Capability-based Computer Systems, Digital Press, Bedford, MA, 1984.
Li, K. and Hudak, P., Memory Coherence in Shared Virtual Memory Systems, ACM

Transactions on Computer Systems 7, 4 (Nov. 1989), 321-359.
Lieberman, H., Using Prototypical Objects to Implement Shared Behavior in Object-

Oriented Languages, Proc. on Object-Oriented Programming Systems,
Languages and Applications, ACM SIGPLAN Notices 21, 11 (1986), 214-223.

204 Bibliography

Liedtke, J., Clans & Chiefs, in GI/ITG-Fachtagung Architektur von Rechensystemen,
Springer-Verlag, Berlin-Heidelberg-New York, 1992, 294-304.

Liedtke, J., Elphinstone, K., Schönberg, S., Härtig, H., Heiser, G., Islam, N., and
Jaeger, T., Achieved IPC Performance (Still The Foundation For Extensibility),
Proc. of the Sixth Workshop on Hot Topics in Operating Systems (HotOS),
Chatham (Cape Cod), MA, May 1997, 28-31.

Lindholm, T. and Yelin, F., The Java Virtual Machine Specifications, Addison Wesley,
Reading, MA, 1997.

Lippman, S., Inside the C++ Object Model, Addison Wesley, Reading, MA, 1996.
Liskov, B., Snyder, A., Atkinson, R., and Schaffert, C., Abstraction Mechanisms in

CLU, Comm. of the ACM 20, 8 (1977), 564-575.
Luger, G. F. and Stubblefield, W. A., Artificial Intelligence and the Design of Expert

Systems, The Benjamin/Cummings Publishing Company, Inc., 1989.
Maeda, C. and Bershad, B. N., Protocol Service Decomposition for High-Performance

Networking., Proc. of the 14th Symp. on Operating System Principles, Ashville,
NC, Dec. 1993, 244-255.

Magnusson, P. S., Larsson, F., Moestedt, A., Werner, B., Dahlgren, F., Karlsson, M.,
Lundholm, F., Nilsson, J., Stenström, P., and Grahn, H., SimICS/sun4m: A
Virtual Workstation, Proc. of the 1998 USENIX Annual Technical Conf., New
Orleans, LA, June 1998, 119.

Mascaranhas, E. and Rego, V., Ariadne: Architecture of a Portable Threads System
Supporting Thread Migration, Software Practice and Experience 26, 3 (Mar.
1996), 327-357.

Massalin, H., Synthesis: An Efficient Implementation of Fundamental Operating
System Services, PhD Thesis, Department of Computer Science, Columbia
University, New York, NY, 1992.

Maxwell, S. E., Linux Core Kernel Commentary, The Coriolis Group, 1999.
McKusick, M. K., Bostic, K., and Karels, M. J., The Design and Implementation of the

4.4BSD Operating System, Addison Wesley, Reading, MA, 1996.
McVoy, L. and Staelin, C., lmbench: Portable Tools for Performance Analysis,

USENIX 1996 Annual Technical Conf., San Diego, CA, Jan. 22-26, 1996, 279-
294.

Menezes, A. J., Oorschot, P. C. V., and Vanstone, S. A., Handbook of Applied
Cryptography, CRC Press, 1997.

Microsoft Corporation and Digital Equipment Corporation, Component Object Model
Specification, Oct. 1995.

Milner, R., Tofte, M., and Harper, R., The Definition of Standard ML, MIT Press,
Cambridge, MA, 1990.

Mitchell, J. G., Gibbons, J. J., Hamilton, G., Kessler, P. B., Khalidi, Y. A., Kougiouris,
P., Madany, P. W., Nelson, M. N., Powell, M. L., and Radia, S. R., An
Overview of the Spring System, Proc. of Compcon 1994, Feb. 1994, 122-131.

Mohr, E., Kranz, D. A., and Jr., R. J. H., Lazy Task Creation: A Technique for

Bibliography 205

Increasing the Granularity of Parallel Programs, IEEE Transactions on Parallel
and Distributed Systems, July 1992, 264-280.

Montz, A. B., Mosberger, D., O’Malley, S. W., Peterson, L. L., Proebsing, T. A., and
Hartman, J. H., Scout: A Communications-Oriented Operating System, Proc. of
the first USENIX Symp. on Operating Systems Design and Implementation,
Monterey, CA, Nov. 1994, 200.

Moon, D. A., Genera Retrospective, Proc. of the International Workshop on Object
Orientation in Operating Systems, Palo Alto, CA, Oct. 1991, 2-8.

Moore, C. H. and Leach, G. C., FORTH - A Language for Interactive Computing,
(internal publication), Amsterdam, NY, 1970.

Moore, C. H., FORTH: A New Way to Program a Computer, Astronomy &
Astrophysics Supplement Series 15, 3 (1974).

Myers, G. J., Can Software for SDI Ever be Error-free?, IEEE computer 19, 11 (1986),
61-67.

Necula, G. C. and Lee, P., Safe Kernel Extensions Without Run-Time Checking, Proc.
of the Second USENIX Symp. on Operating Systems Design and
Implementation, Seattle, WA, Oct. 1996, 229-243.

Nelson, G., Systems Programming with Modula-3, Prentice Hall, Englewood Cliffs,
NJ, 1991.

Organick, E. I., The Multics System: An Examination of Its Structure, MIT Press,
Cambridge, MA, 1972.

Organick, E. I., A Programmer’s View of the Intel 432 System, McGraw-Hill, New
York, 1983.

Otte, R., Patrick, P., and Roy, M., Understanding CORBA, The Common Object
Request Broker Architecture, Prentice Hall, Englewood Cliffs, NJ, 1996.

Ousterhout, J. K., Why Aren’t Operating Systems Getting Faster As Fast as Hardware,
USENIX Summer Conf., Anaheim, CA, June 1990, 247-256.

Pai, V. S., Druschel, P., and Zwaenepoel, W., IO-Lite: A Unified I/O Buffering and
Caching System, ACM Transactions on Computer Systems 18, 1 (Feb. 2000),
37-66.

Palm Inc., PalmOS, (available as http://www.palmos.com), 2000.
Parnas, D., On the Criteria to be used in decomposing systems into modules, Comm. of

the ACM 15, 2 (1972).
Patterson, D. A. and Ditzel, D. R., The Case for the Reduced Instruction Set Computer,

Computer Architecture News 8, 6 (Oct. 1980), 25-33.
Pfleeger, C. P., Security in Computing, Prentice Hall, Englewood Cliffs, NJ, Second

edition, 1996.
Pike, R., Presotto, D., Dorward, S., Flandrena, B., Thompson, K., Trickey, H., and

Winterbottom, P., Plan 9 From Bell Labs, Usenix Computing Systems, 1995.
Postel, J., Internet Protocol, RFC-791, ISI, Sept. 1981.
Postel, J., Transmission Control Protocol, RFC-793, ISI, Sept. 1981.
Probert, D., Bruno, J. T., and Karaorman, M., SPACE: A New Approach to Operating

206 Bibliography

System Abstraction, Proc. of the International Workshop on Object Orientation
in Operating Systems, Palo Alto, CA, Oct. 1991, 133-137.

Probert, D. B., Efficient Cross-domain Mechanisms for Building Kernel-less Operating
Systems, PhD Thesis, Department of Electrical and Computer Engineering,
University of California Santa Barbara, Santa Barbara, CA, Aug. 1996.

Rashid, R., Tevanian, A., Young, M., Golub, D., Baron, R., Black, D., Bolosky, W.,
and Chew, J., Machine-Independent Virtual Memory Management for Paged
Uniprocessor and Multiprocessor Architectures, IEEE Transactions on
Computers 37, 8 (Aug. 1998), 896-908.

Reiss, S. P., Connecting Tools Using Message Passing in the Field Environment, IEEE
Software 7, 4 (July 1990), 57-66.

Ritchie, D. M. and Thompson, K., The UNIX Time-Sharing System, Comm. of the
ACM 17, 7 (July 1974), 365-75.

Rosenblum, M., Herrod, S. A., Witchel, E., and Gupta, A., Fast and Accurate
Multiprocessor Simulation: The SimOS Approach, IEEE Parallel and
Distributed Technology 3, 4 (Fall 1995).

Rosu, M., Schwan, K., and Fujimoto, R., Supporting Parallel Applications on Clusters
of Workstations: The Virtual Communication Machine-based architecture,
Cluster Computing 1, 1 (May 1998), 51-67, Baltzer Science Publishers.

Rozier, M., Abrossimov, V., Armand, F., Boule, I., Gien, M., Guillemont, M.,
Herrmann, F., Kaiser, C., Leonard, P., Langlois, S., and Neuhauser, W., Chorus
Distribted Operating System, USENIX Computing Systems 1 (Oct. 1988), 305-
379.

Saulpaugh, T. and Mirho, C. A., The Inside JavaOS Operating System, Addison
Wesley, Reading, MA, 1999.

Schröder-Preikschat, W., The Logical Design of Parallel Operating Systems, Prentice
Hall, Englewood Cliffs, NJ, 1994.

Seawright, L. H. and Mackinnon, R. A., VM/370 − A Study of Multiplicity and
Usefulness, IBM Systems Journal 18 (1979), 4-17.

Seltzer, M. I., Endo, Y., Small, C., and Smith, K. A., Dealing With Disaster: Surviving
Misbehaved Kernel Extensions, Proc. of the Second USENIX Symp. on
Operating Systems Design and Implementation, Seattle, WA, Oct. 1996, 213-
227.

Shapiro, J. S. and Weber, S., Verifying the EROS Confinement Mechanism, 2000 IEEE
Symp. on Security and Privacy, Berkeley, CA, May 2000, 166-176.

Shapiro, M., Structure and Encapsulation in Distributed Systems: the Proxy Principle,
Proc. of the Sixth IEEE Symp. on Distributed Computer Systems, Cambridge,
MA, May 1986, 198-204.

Shapiro, J. S., Farber, D. J., and Smith, J. M., The Measured Performance of a Fast
Local IPC, Proc. of the Fifth International Workshop on Object Orientation in
Operating Systems, Seattle, WA, Oct. 1996, 89-94.

Bibliography 207

Shapiro, J. S. and Weber, S., Verifying Operating System Security, MS-CIS-97-26,
University of Pennsylvania, Philadelphia, PA, July 1997.

Shapiro, J. S., Smith, J. M., and Farber, D. J., EROS: A Fast Capability System, Proc.
of the 17th Symp. on Operating System Principles, Kiawah Island Resort, SC,
Dec. 1999, 170-185.

Shock, J. F., Dalal, Y. K., Redell, D. D., and Crane, R. C., Evolution of the Ethernet
Local Computer Network, IEEE Computer 15 (Aug. 1982), 10-27.

Sirer, E. G., Security Flaws in Java Implementations, (available as http://kimera.cs.

washington.edu/flaws/index.html), 1997.
Smith, S. W. and Weingart, S. H., Building a High-Performance, Programmable Secure

Coprocessor, The International Journal of Computer and Telecommunications
Networking 31 (1999), 831-860, Elsevier.

Snyder, L., On the Synthesis and Analysis of Protection Systems, Proc. of the Sixth
Symp. on Operating System Principles, Nov. 1977, 141-150.

Soltis, F. G., Inside the AS/400: Featuring the AS/400e Series, Duke University Press,
Second edition, 1997.

Spector, A. Z., Performing Remote Operations Efficiently on a Local Computer
Network, Comm. of the ACM, Apr. 1982, 246-260.

Spencer, R., Smalley, S., Loscocco, P., Hibler, M., Anderson, D., and Lepreau, J., The
Flask Security Architecture: System Support for Diverse Security Policies, The
Eight USENIX Security Symp., Washington, DC, Aug. 1999, 123-139.

Steele, G. L., Multiprocessing Compactifying Garbage Collection, Comm. of the ACM
18, 9 (Sept. 1975), 495-508.

Stevens, W. R., TCP/IP Illustrated, Volume 1: The protocols, Addison Wesley,
Reading, MA, 1994.

Stevenson, J. M. and Julin, D. P., Mach-US: UNIX On Generic OS Object Servers,
USENIX Conf. Proc., New Orleans, LA, Jan. 16-20, 1995, 119-130.

Stodolsky, D., Chen, J. B., and Bershad, B. N., Fast Interrupt Priority Management in
Operating System Kernels, USENIX Micro-kernel Workshop, San Diego, CA,
Sept. 1993, 105-110.

Stroustrup, B., The C++ Programming Language, Addison Wesley, Reading, MA,
1987.

Sullivan, K. and Notkin, D., Reconciling Environment Integration and Software
Evolution, ACM Transactions on Software Engineering and Methodology 1, 3
(July 1992), 229-268.

SunSoft, Java Servlet Development Kit, (available as http://java.sun.com/products/

servlet/index.html), 1999.
Sun Microsystems Inc., The SPARC Architecture Manual, Prentice Hall, Englewood

Cliffs, NJ, 1992.
Sunderam, V. S., PVM: A Framework for Parallel Distributed Computing,

Concurrency: Practice & Experience 2, 4 (Dec. 1990), 315-339.
Tanenbaum, A. S., Mullender, S. J., and Renesse, R., Using Sparse Capabilities in a

208 Bibliography

Distributed Operating System, The Sixth International Conf. in Distributed
Computing Systems, Cambridge, MA, June 1986, 558-563.

Tanenbaum, A. S., Computer Networks, Prentice Hall, Englewood Cliffs, NJ, Second
edition, 1988.

Tanenbaum, A. S., Kaashoek, M. F., Van Renesse, R., and Bal, H. E., The Amoeba
Distributed Operating System - a Status Report, Computer communications 14,
6 (July 1991), 324-335.

Tanenbaum, A. S. and Woodhull, A. S., Operating Systems: Design and
Implementation, Prentice Hall, Englewood Cliffs, NJ, Second edition, 1997.

Tao Systems, Elate Fact Sheet, (available as http://www.tao.co.uk/2/tao/elate/

elatefact.pdf), 2000.
Teitelman, W., A tour through Cedar, IEEE Software 1, 2 (1984), 44-73.
Thacker, C. P., Stewart, L. C., and Jr., E. H. S., Firefly: A Multiprocessor Workstation,

IEEE Transactions on Computers 37, 8 (Aug. 1988), 909-920.
Thitikamol, K. and Keleher, P., Thread Migration and Communication Minimization in

DSM Systems, Proc. of the IEEE 87, 3 (Mar. 1999), 487-497.
Transvirtual Technologies Inc., Kaffe OpenVM, (available as http://www.transvirtual.

com), 1998.
UK ITSEC, UK ITSEC Documentation, (available as http://www.itsec.gov.uk/docs/

formal.htm), 2000.
Ungar, D. and Smith, R. B., Self: The Power of Simplicity, Proc. of Object-Oriented

Programming Systems, Languages and Applications, ACM SIGPLAN Notices,
Orlando, FL, Oct. 1987, 227-242.

Vahalla, U., UNIX Internals: The New Frontiers, Prentice Hall, Englewood Cliffs, NJ,
1996.

Van Doorn, L., A Secure Java Virtual Machine, Proc. of the Ninth Usenix Security
Symp., Denver, CO, Aug. 2000, 19-34.

Van Doorn, L. and Tanenbaum, A. S., Using Active Messages to Support Shared
Objects, Proc. of the Sixth SIGOPS European Workshop, Wadern, Germany,
Sept. 1994, 112-116.

Van Doorn, L., Homburg, P., and Tanenbaum, A. S., Paramecium: An Extensible
Object-based Kernel, Proc. of the Fifth Hot Topics in Operating Systems
(HotOS) Workshop, Orcas Island, WA, May 1995, 86-89.

Van Doorn, L. and Tanenbaum, A. S., FlexRTS: An Extensible Orca Run-time System,
Proc. of the third ASCI Conf., Heijen, The Netherlands, May 1997, 111-115.

Van Renesse, R., Tanenbaum, A. S., and Wilschut, A., The Design of a High-
Performance File Server., Proc. of the Ninth International Conf. on Distributed
Computing Systems, 1989, 22-27.

Van Renesse, R., The Functional Processing Model, PhD Thesis, Department of
Mathematics and Computer Science, Vrije Universiteit, Amsterdam, Holland,
Oct. 1989.

Van Steen, M., Homburg, P., Van Doorn, L., Tanenbaum, A. S., and de Jonge, W.,

Bibliography 209

Towards Object-based Wide Area Distributed Systems, Proc. of the
International Workshop on Object Orientation in Operating Systems, Lund,
Sweden, Aug. 1995, 224-227.

Van Steen, M., Homburg, P., and Tanenbaum, A. S., Globe: A Wide-Area Distributed
System, Concurrency, Jan. 1999, 70-78.

Verkaik, P., Globe IDL, Globe Design Note, Department of Mathematics and
Computer Science, Vrije Universiteit, Amsterdam, The Netherlands, Apr. 1998.

Von Eicken, T., Culler, D. E., Goldstein, S. C., and Schauser, K. E., Active Messages:
A Mechanism for Integrated Communication and Computation, Proc. of the
19th International Symp. on Computer Architecture, Gold Coast, Australia,
May 1992, 256-266.

Von Eicken, T., Basu, A., Buch, V., and Vogels, W., U-Net: A User-level Network
Interface for Parallel and Distributed Computing, Proc. of the 15th Symp. on
Operating System Principles, Copper Mountain Resort, CO, Dec. 1995, 40-53.

Wahbe, R., Lucco, S., Anderson, T. E., and Graham, S. L., Efficient Software-based
Fault Isolation, Proc. of the 14th Symp. on Operating System Principles,
Ashville, NC, Dec. 1993, 203-216.

Wallach, D. A., Hsieh, W. C., Johnson, K. L., Kaashoek, M. F., and Weihl, W. E.,
Optimistic Active Messages: A Mechanism for Scheduling Communication
with Computation, Proc. of the Fifth Symp. on Principles and Practice of
Parallel Programming, Santa Barbara, CA, July 1995, 217-226.

Wallach, D. S., Balfanz, D., Dean, D., and Felten, E. W., Extensible Security
Architectures for Java, Proc. of the 16th Symp. on Operating System Principles,
Saint-Malo, France, Oct. 1997, 116-128.

D. L. Weaver and T. Germond, eds., The SPARC Architecture Manual, Version 9,
Prentice Hall, Englewood Cliffs, NJ, 1994.

Wegner, P., Dimensions of Object-Based Language Design, SIGPLAN Notices 23, 11
(1987), 168-182.

Weiser, M., Demers, A., and Hauser, C., The Portable Common Runtime Approach to
Interoperability, Proc. of the 12th Symp. on Operating System Principles,
Litchfield Park, AZ, Dec. 1989, 114-122.

West, D. B., Introduction to Graph Theory, Prentice Hall, Englewood Cliffs, NJ, 1996.
Wetherall, D. and Tennenhouse, D. L., The ACTIVE IP Option, Proc. of the Seventh

SIGOPS European Workshop, Connemara, Ireland, Sept. 1996, 33-40.
Wilkes, M. V. and Needham, R. M., The Cambridge CAP Computer and its Operating

System, North Holland, New York, NY, 1979.
Wilson, P. R. and Kakkad, S. V., Pointer Swizzling at Page Fault Time: Efficiently and

Compatibly Supporting Huge Address Spaces on Standard Hardware, Proc. of
the International Workshop on Object Orientation in Operating Systems, Paris,
France, Sept. 1992, 364-377.

Wind River Systems Inc., VxWorks Scalable Run-time System, Wind River Systems
Inc., 1999.

210 Bibliography

Wirth, N. and Gütknecht, J., Project Oberon, The Design of an Operating System and
Compiler, ACM Press, 1992.

Wulf, W. A. and Harbison, S. P., HYDRA/C.mmp: An Experimental Computer System,
McGraw-Hill, New York, 1981.

X.509, ITU-T Recommendation X.509 (1997 E): Information Technology - Open
Systems Interconnection - The Directory: Authentication Framework, June
1997.

Young, M., Tevanian, A., Rashid, R., Golub, D., Eppinger, J., Chew, J., Bolosky, W.,
Black, D., and Baron, R., The Duality of Memory and Communication in the
Implementation of a Multiprocessor Operating System, Proc. of the 11th Symp.
on Operating System Principles, Austin, TX, Nov. 1987, 13-23.

Bibliography 211

Index

A
ABI, see Application binary in-

terface
Abstraction, 16
Accent, 112
Access control, 136
Access, direct memory, 34, 73,

78, 186
Access matrix, 49
Access model, discretionary, 47
Access model, mandatory, 48
Action, active filter, 103
Active filter, 101−112, 186−187
Active filter action, 103
Active filter condition, 103
Active filter issues, 102
Active filter matching, 105
Active filter state synchroniza-

tion, 108
Active filter virtual machine,

105−108
Active filter virtual machine in-

struction set, 107
Active message, 120
Active messages, 88−90, 112
Active messages, optimistic, 90,

113
Active replication, 121
Address space and memory

management, 184
Algol, 25
Algorithm, iterative deepening,

127−128
Aliasing, physical page, 110
Amoeba, 4, 6, 11, 13, 32, 36−37,

54−55, 57, 62, 66, 76, 83,
85−86, 89−90, 94, 112−113,
121

Apertos, 82
Application binary interface, 77
Application specific handler, 76,

114

Application specific integrated
circuit, 73

Architecture simulator, SPARC,
13, 160

Arrays, field programmable gate,
112

ASH, see Application specific
handler

ASIC, see Application specific
integrated circuit

Atomic exchange, 93
Atomic test-and-set, 93

B
Buffer, shared, 186
Buffers, cross domain shared,

96−99, 187
Bullet file server, 37
Burroughs B5000, 42, 131
Byte code, 128
Byte code verifier, 128

C
Cache, 13, 163
Cache, hot, 165
Cache, instruction, 165
Caffeine Marks, 174
Capability, 41, 47, 130
Capability list, 47
Chains, 41
Chains, see Invocation chains
Chorus, 6, 11, 112
CJVM, 154
Clans and chiefs, 81
Class, 21, 183
Class loader, 133
Class variables, 22
Classless object, 22
Clouds, 113
Code generation, dynamic, 105,

108
Code, proof-carrying, 42

Collection of workstations, 110
Colocate, 38, 80−82, 97, 101,

137, 183
COM, see Component object

model
Common criteria, 129
Common object request broker

architecture, 10, 31−32, 154
Communication, interprocess,

159
Compile time, 132
Complexity, implementation,

170, 174, 178
Component, interprocess com-

munication, 133
Component object model, 10, 31
Composition, object, 27−30, 183
Condition, active filter, 103
Configurable, statically, 117
Confinement problem, 47
Conservative garbage collector,

147
Consistency, sequential, 117
Context, 40, 49
Context switch, thread, 171
Control safety, 42−43, 105
Control transfer latency, 165
COOL, 69
CORBA, see Common object re-

quest broker architecture
COW, see Collection of work-

station
Cross domain invocation, 64
Cross domain method invocation,

134, 140−141, 175−178
Cross domain shared buffers,

96−99, 187
Current window pointer, 63
CWP, see Current window

pointer

D
DAC, see Discretionary access

212

control
Data cache, 13, 160, 165
Data sharing, 141−146
D-cache, see Data cache
DCOM, see Distributed com-

ponent object model
Deepening algorithm, iterative,

127−128
Definition language, interface,

18
Definition language, object, 23
Definition of extensible operating

system, 4
Delegation, 16, 22, 32
Demand paging, 52
Demultiplexing, 102
Denial of service, 128
Design choices, 39
Design issues, 36−38
Design principles, 39−40
Device, 72
Device driver, 72
Device interface, 72
Device management, 186
Device manager, 72−74
Devices, intelligent I/O, 102
Direct memory access, 34, 73,

78, 186
Discretionary access control, 128
Discretionary access model, 47
Distributed component object

model, 31
Distributed object model, 17
Distributed shared memory, 153
DMA, see Direct memory access
Domain model, lightweight pro-

tection, 87−88, 96
Domain shared buffers, cross,

96−99, 187
DPF, see Dynamic packet filter
DSM, see Distributed shared

memory
Dynamic code generation, 105,

108
Dynamic packet filter, 78, 114

E
Earliest dead-line first, 5, 76
EDF, see Earliest dead-line first
Elate, 7
Encapsulation, 16
Entropy, 17, 46, 74
Eros, 51, 55, 83
Event, 41
Event driven architecture, 39
Event management, 184−185
Exchange, atomic, 93
Exokernel, 5, 78
ExOS, 42, 77−78, 114, 132, 157,

186

Experimentation methodology,
160

Extensibility, 24, 30−31
Extensible kernel, 7, 181, 183
Extensible operating system, 4
Extensible operating system, de-

finition of, 4

F
False sharing, 131
Fault isolation, 5, 38
Fault isolation, software, 42
Fbufs, 96, 99
Field programmable gate arrays,

112
FIFO order, 127
Filter, active, 186
Filter virtual machine instruc-

tions, 106−108
First class object, 21
Flash, 75
Flask, 80
FlexRTS, 117, 154, 187
Flick, 70
Fluke, 80
Flux, 32
Flux OSKit, 80
Forth, 7
Fragmentation, 131
Framework, 27, 32
French, arbitrary use of, 188

G
Garbage collection, 146−152
Garbage collector, 133
Gate arrays, field programmable,

112
Generation, dynamic code, 105,

108
Globe, 10, 15, 18, 30, 32, 70,

182
Greek symbols, gratuitous, 74,

126

H
Halting problem, 42
Hardware fault isolation, 133
HMAC, 44
Hot cache, 165
Hydra, 83

I
I-cache, see Instruction cache
Identifier, resource, 46
IDL, 192
IDL, see Interface definition

language

IEEE 1275, 72
Implementation complexity, 170,

174, 178
In-circuit emulator, 161, 173
Indeterminacy sources, perfor-

mance, 163
Inferno, 7
Information technology security,

129
Inheritance, 16
Instruction cache, 13, 160, 165
Instruction set, active filter virtu-

al machine, 107
Instruction traces, 160
Instructions, filter virtual

machine, 106−108
Intelligent I/O devices, 102
Interface, 17−21
Interface definition language, 18
Interface evolution, 17
Interface proxy, 68−70
Internet, 100
Interpositioning, 24
Interpretation, 7
Interprocess communication, 159
Interprocess communication

component, 133
Interprocess communication

redirection, 38
Interrupt, 49
Invocation chains, 41, 167
Invocation, cross domain, 64
Invocation, cross domain method,

140−141, 175−178
I/O devices, intelligent, 102
I/O MMU, 73
IO-Lite, 96, 99, 113
IPC, see Interprocess communi-

cation
Isolation, software fault, 42
Issues, active filter, 102
Iterative deepening algorithm,

127−128
ITSEC, see Information technol-

ogy security

J
Java, 128
Java Nucleus, 129, 174
Java resource control, 129
Java Virtual Machine, 132
Java virtual machine, 105, 128,

174
Java virtual machine, secure,

137−152, 174−178
JavaOS, 7, 131
J-Kernel, 154
JVM, see Java virtual machine

Index 213

K
KaffeOS, 7
Kernel, extensible, 7, 181, 183
Kernel managed resources, 47
KeyKOS, 83

L
L4, 80−81, 132, 157
Language, type-safe, 42
Latency, control transfer, 165
LavaOS, 10, 36, 57, 77, 80−81,

132, 157
Layered operating system, 3
Lightweight protection domain

model, 87−88, 96
Lisp Machine, 131
List, capability, 47
Loading time, 132
Local object model, 16

M
MAC, see Mandatory access

control
Mach, 6, 11, 36−37, 51, 81, 112
Machine instructions, filter virtu-

al, 106−108
Machine, virtual, 2
MacOS, 55
Mailbox, 57
Managed resources, kernel, 47
Managed resources, user, 47
Management unit, memory, 129,

161
Manager, resource, 2
Mandatory access, 38
Mandatory access control, 129
Mandatory access model, 48
Matching, active filter, 105
Memory access, direct, 34, 73,

78, 186
Memory management unit, 13,

129, 160−161
Memory, physical, 51−54
Memory safety, 41−42, 105
Memory traces, 160
Memory, virtual, 51−54
Mesa/Cedar, 131
Messages, active, 112
Messages, optimistic active, 90,

113
Method invocation, cross

domain, 140−141, 175−178
Methodology, experimentation,

160
Microbenchmark, 158
Microkernel, 5−6
MicroSPARC, 13, 159
Migrating thread system, 186

Migrating threads, 141
Migrating threads, unified,

85−95
Migration, thread, 93, 113
Minix, 6
MkLinux, 81
MMU, see Memory management

unit
Model, lightweight protection

domain, 87−88, 96
Model, shared object, 117
Modular operating system, 3
Module, 22
Monolithic kernel, 5
Monolithic operating system, 3
Multics, 74

N
Name resolution control, 25
Name server interface, 70−71
Name space management,

185−186
Naming, 67−71
Naming, object, 23−26, 183
Nanokernel, 5
Network objects, 69
NORMA RPC, 37
NT, 38, 112

O
OAM, see Optimistic active

message
Oberon, 32, 55, 82, 131
Object, 21, 41
Object composition, 27−30, 183
Object definition language, 23,

192
Object invocation, 67−71
Object linking and embedding,

31
Object model, 181−183
Object model, distributed, 17
Object model, local, 16
Object naming, 23−26, 183
Object request broker, 31−32
Object sharing, 129
ODL, see Object definition

language
OLE, see Object linking and

embedding
Open boot prom, 72
Operating system, 2
Operating system, extensible, 4
Operating system, layered, 3
Operating system, modular, 3
Operating system, monolithic, 3
Optimistic active messages, 84,

90, 113
ORB, see Object request broker

Orca, 117, 153
OSKit, 6, 10, 132, 157
Overhead, register window, 164
Overrelaxation, successive,

126−127

P
Page aliasing, physical, 110
Page server, 52
Paging, demand, 52
PalmOS, 55
Paramecium, 1
PDA, see Personal digital assis-

tant
Pebble, 81
Performance indeterminacy

sources, 163
Personal digital assistant, 75
Physical cache, 160
Physical memory, 51−54
Physical page aliasing, 110
Plessey System 250, 83
Plug compatibility, 17
Polymorphism, 16
Pop-up thread promotion, 90−93
PRAM order, 123, 127
Preemptive event, 41
Process protection model, 131
Processor trap, 49
Programmable gate arrays, field,

112
Promotion, pop-up thread, 90−93
Proof-carrying code, 42
Protection, 24
Protection domain, 40, 48−51,

129
Protection domain model, light-

weight, 87−88, 96
Protection model, 41, 49
Protocol stack, TCP/IP, 100−101
Proxy objects, 69

Q
QNX, 112

R
Range, virtual memory, 98, 110
Redirection, interprocess com-

munication, 38
Reduced instruction set comput-

er, 12, 105
Referentially transparent, 105
Register window, 163
Register window overhead, 164
Register windows, 13, 62−67, 86
Register windows, SPARC, 63
Remote method invocation, 129
Rendez-vous, 56

214 Index

Resource control, Java, 129
Resource identifier, 46
Resource manager, 2
Resources, kernel managed, 47
Resources, user managed, 47
RISC, see Reduced instruction

set computer
ROM, 75
ROM, see Read only memory
Run time, 132

S
Safe extensions, 124
Sandbox, 42, 111
SCOMP, see Secure communi-

cation processor
Scout, 6, 79−80
Secure communication processor,

74
Secure communications proces-

sor, 74
Secure java virtual machine,

137−152, 174−178
Secure system, 49
Security critical code, 128
Security policy, 133
Security sensitive code, 128
Sequencer protocol, 121
Sequential consistency, 117,

123, 127, 153
Sex, 1
Shared buffer, 186
Shared buffers, cross domain,

96−99, 187
Shared memory, 117
Shared object model, 117
Sharing, synchronization state,

93−95, 113
Simulator, SPARC architecture,

13, 160
Software fault isolation, 42
Solaris, 112, 160
Sources, performance indeter-

minacy, 163
SPACE, 57, 82
Space bank, 51
SPARC, 12, 63
SPARC architecture simulator,

13, 160
SPARC register windows, 63
SPARCClassic, 12
SPARCLite, 12
SPIN, 78−79, 132, 157
Spring, 6, 11, 113
Stack, TCP/IP protocol,

100−101
Standard class interface, 21
Standard object interface, 19
State sharing, synchronization,

93−95, 113

State synchronization, active
filter, 108

Statically configurable, 117
Structured organization, 17
Successive overrelaxation,

126−127
Switch, thread context, 171
Synchronization state sharing,

93−95, 113
Synchronization, thread, 88
System, migrating thread, 186
System, operating, 2

T
Tagged TLB, 160
TCB, see Trusted computing

base
TCP/IP, 113
TCP/IP protocol stack, 100−101
Test-and-set, atomic, 93
Thesis contributions, 10−12
Thread context switch, 171
Thread migration, 93, 113, 129
Thread of control, 41, 54−67
Thread promotion, pop-up,

90−93
Thread synchronization, 88
Thread system, 133
Thread system, migrating, 186
Threads, 112
Threads, unified migrating,

85−95
TLB, see Translation lookaside

buffer
TLB, tagged, 160
Traced garbage collector, 147
Traces, instruction, 160
Traces, memory, 160
Trampoline code, 140
Transfer latency, control, 165
Translation lookaside buffer,

160, 163, 167
Traveling salesman problem,

110, 125−126
Trust model, 133
Trusted computing base, 38, 44,

129−130, 132−133, 137, 152,
174−175, 188

TSP, see Traveling salesman
problem

Type-safe language, 42

U
UCSD P-code, 7
Unified migrating threads,

85−95, 186−187
Uniform object naming, 129
Unit, memory management, 129,

161

User managed resources, 47

V
VCM, see Virtual communica-

tion machine
VCODE, 105, 114
Virtual communication machine,

115
Virtual machine, 2
Virtual machine, active filter,

105−108
Virtual machine instruction set,

active filter, 107
Virtual machine, Java, 105, 128,

174
Virtual machine, secure java,

137−152, 174−178
Virtual memory, 51−54
Virtual memory range, 98, 110

W
Window invalid mask, 63
Window overhead, register, 164
Window, register, 163
Window subsystem, 38
Windows, 55
Windows, register, 13, 62−67,

86

X
XMI, see Cross domain method

invocation

Index 215

Curriculum Vitae

Name: Leendert P. van Doorn

Date of birth: October 17, 1966

Place of birth: Drachten, The Netherlands

Nationality: Dutch

Email: leendert@paramecium.org

Education

Sept ’86 - Aug ’90Polytech-
nic

HTS, Haagse Hogeschool, Den Haag, The
Netherlands. Bachelor degree.

University Sept ’90 - May ’93 Vrije Universiteit, Amsterdam, The Nether-
lands. Master degree.

Sep ’93 - March ’98 Vrije Universiteit, Amsterdam, The Nether-
lands. Ph.D. student in Computer Systems.
Supervisor: A.S. Tanenbaum.

Work experience

Jan ’90 - Jun ’90: Research Co-op, CWI, Amsterdam, The Netherlands.

Sep ’91 - Sep ’92: Research assistant on the Amoeba project, VU, Amsterdam, The
Netherlands.

Sep ’91 - Sep ’93: Teaching assistant for the courses ‘‘Compiler Construction,’’ ‘‘Com-
puter Networks,’’ ‘‘Computer Systems,’’ and ‘‘Programming Languages,’’ VU,
Amsterdam, The Netherlands.

Jun ’93 - Sep ’93: Research Intern, Digital Systems Research Center, Palo Alto, CA.

216

Jun ’94 - Sep ’94: Research Intern, Digital Systems Research Center, Palo Alto, CA.

Jun ’95 - Sep ’95: Research Intern, AT&T Bell Laboratories, Murray Hill, NJ.

April ’98 - present: Research Staff Member, IBM T.J. Watson Research Center, York-
town, NY.

Publications (refereed)

1. Van Doorn, L., ‘‘A Secure Java Virtual Machine,’’ Proc. of the Ninth Usenix Securi-
ty Symposium, USENIX, Denver, CO, August 2000, 19-34.

2. Caminada, M.W.A., Van der Riet, R.P., Van Zanten, Van Doorn, L., ‘‘Internet Secu-
rity Incidents, a Survey within Dutch Organisations,’’ Computers & Security, El-
sevier, Vol. 17, No. 5, 1998, 417-433 (an abbreviated version appeared in ‘‘Internet
Security Incidents, a Survey within Dutch Organisations,’’ Proc. of the AACE Web-
Net 98 World Conference of the WWW, Internet, and Intranet, Orlando, FL, No-
vember 1998).

3. Van Doorn, L., and Tanenbaum, A.S., ‘‘FlexRTS: An extensible Orca Run-time
System,’’ Proc. of the Third ASCI Conference, ASCI, Heijen, The Netherlands, May
1997, 111-115.

4. Van Doorn, L., Abadi, M., Burrows, M., and Wobber, E., ‘‘Secure Network Ob-
jects’’ Proc. of the IEEE Security & Privacy Conference, IEEE, Oakland, CA, May
1996, 211-221 (an extended version of this paper appeared as a book chapter in J.
Vitek and P. Jensen (eds.), ‘‘Secure Internet Programming - Security issues for
Mobile and Distributed Objects’’, Springer-Verlag, 1999).

5. Van Steen, M, Homburg, P., Van Doorn, L., Tanenbaum, A.S., de Jonge, W., ‘‘To-
ward Object-based Wide Area Distributed Systems,’’ Proc. of the International
Workshop on Object Orientation in Operating Systems, IEEE, Lund, Sweden, Au-
gust 1995, 224-227.

6. Homburg, P., Van Doorn, L., Van Steen, M., and Tanenbaum, A.S., ‘‘An Object
Model for Flexible Distributed Systems,’’ Proc. of the First ASCI Conference,
ASCI, Heijen, The Netherlands, May 1995, 69-78.

7. Van Doorn, L., Homburg, P., and Tanenbaum, A.S., ‘‘Paramecium: An extensible
object-based kernel,’’ Proc. of the Fifth Hot Topics in Operating Systems (HotOS)

Curriculum Vitae 217

Workshop, IEEE, Orcas Island, WA, May 1995, 86-89.

8. Van Doorn, L., and Tanenbaum, A.S., ‘‘Using Active Messages to Support Shared
Objects,’’ Proc. of the Sixth SIGOPS European Workshop, ACM SIGOPS, Wadern,
Germany, September 1994, 112-116.

Publications (unrefereed)

9. Van Doorn, L. ‘‘Computer Break-ins: A Case Study,’’ Proc. of the Annual Dutch
Unix User Group (NLUUG) Conference, October 1992, 143-151.

218 Curriculum Vitae

