
Secure Coprocessor-based Intrusion Detection

XiaolanZhang LeendertvanDoorn TrentJaeger RonaldPerez ReinerSailer
IBM T. J. WatsonResearch Center

Hawthorne, NY10532USA
Email:

�
cxzhang,leendert,jaegert,ronpz,sailer � @us.ibm.com

1 Introduction

Thegoalof anintrusiondetectionsystem(IDS) is to rec-
ognizeattackssuchthattheirexploitationcanbeprevented.
Sincecomputer systemsarecomplex, therearea varietyof
placeswheredetectionis possible. For example, analysis
of network traffic may indicatean attackin progress[11],
a compromiseddaemonmay be detectedby its abnormal
behavior [14, 12, 5, 10, 15], andsubsequent attacksmay
be prevented by the detectionof backdoors and stepping
stones[16, 17].

Themostpopulararchitecturefor IDSsis host-basedin-
trusion detection, wherethe IDS runs asa monitor on its
hostandcollectsinformationusedto identify possiblein-
trusions on thathost. Sincethecompromiseof any system
servicegenerally resultsin the compromiseof the operat-
ing system’s trustedcomputingbase(TCB), theIDS is also
susceptibleto compromise,andthuscannotbetrusted.

In this paper, we examine the effectivenessof secure-
coprocessor-basedintrusiondetection. In thiscase,theIDS
is run on a coprocessorratherthan on the host. Thus, a
compromiseof thehostdoesnotaffect thecoprocessor, and
self-protectionof theIDS monitor is achieved. Sincea co-
processorcan seethe memory of the host, a coprocessor
IDS canverify that the host’s stateis correct. However, a
coprocessorIDS cannot interposethe host’s execution the
way that a host IDS can. Therefore,we needto identify
a new approach that enableseffective detectiongiven the
external nature of thecoprocessor.

The remainder of the paper is structuredasfollows. In
Section2, we definecoprocessor-basedintrusiondetection.
In Section3, we discussa seriesof applications possible
with this approach,anddescribeexperimentsthatshow the
kinds of attacksthat canbe successfullydetectedby a co-
processor. In Section4, we discusslimitations of this ap-
proachandhow it canbeextendedto take preventive steps
whenanomaliesaredetected. Section5 concludes.

2 Coprocessor-based Intrusion Detection

Coprocessor-basedintrusion detection meansthat host
datais collectedandprocessedby software running on a
coprocessorratherthanthehostitself [4]. Typically, a co-
processorsharesinterfaceswith thehostprocessorthaten-
ablesit to examineandperhapsmodify thestateof thehost.
Thenumberandchoiceof interfacesdeterminesthedegree
to whichintrusion detectionis possible.Weuseasecureco-
processorbecauseit offers additional securityfeaturesthat
aredesirablefor anIDS (seeSection2.2).

2.1 Secure Coprocessors

A secure coprocessoris a tamper-resistantcomputing
devicedesigned to perform critical tasksin anenvironment
in whichphysicalattacksarepossible.Suchadevicecanbe
usedto securelyboot thehostsysteminto aknown state.

In thecontext of this paper, we examine useof theIBM
4758 PCI CryptographicCoprocessor[1, 7, 13]. The4758
consistsof a CPU, volatile andnon-volatile memory, and
cryptographic accelerators. It is wrapped insidea tamper-
responding secureboundary. The device communicates
with the hostvia the PCI bus, wherebyit can issuecom-
mands to operateonsystemmemory.

Thesoftwarearchitectureof theIBM 4758device is de-
signedto support generic securityapplications [8]. The
softwareinsuresthatthedevicebootssecurely, andthatonly
authorizedprogramscanexecuteon thedevice. Thedevice
alsocomeswith factory-installedcertificatesthatallow it to
authenticateitself to external entities.

2.2 Advantages

Comparedto host-basedintrusiondetection, theuseof a
securecoprocessorfor intrusiondetectionhasthefollowing
advantages:

1. Independence from the host OS. The securecopro-
cessoris an autonomous subsystemthat hasits own



operatingsystemandapplicationsoftware.Its tamper-
resistancealsoprovidesstrongintegrity protection for
theIDS.

2. Narrow interface. The interfaceusedfor communi-
catingbetweenthehostandthesecurecoprocessoris
simplisticandwell-defined. It is therefore muchmore
difficult to exploit theinterfaceandlaunchattacks.

3. Secure boot. The securecoprocessorcanbe usedto
boot the host into a known statein which invariants
canbedefined.

4. Trusted observer. Sincethesecurecoprocessoris de-
signedto protectits authenticationkeysagainstalmost
any attack,any authenticatedstatementsmadeby the
securecoprocessorcanbe fully trusted. This is very
useful in a scenariowheremultiple coprocessorscol-
laborateon a taskor the IDS datais consumed by a
remote entity.

2.3 Monitoring

In addition to self-protection, an effective IDS mustbe
ableto monitor the controlled operationsthat may leadto
an intrusion. In a host-basedIDS, systemcalls and key
kernel operations areoften interposedsuchthat IDS data
canbecollectedandanalyzed. In acoprocessor-basedIDS,
monitoring cannot bedone by interposition. Thehostwill
continueto execute,sotheIDS paradigm mustbealteredto
suit this environment.

Insteadof interposing operations,we propose that the
coprocessorIDS baseits analysisonsysteminvariants.The
hostsystemasa whole maintains certainintegrity proper-
ties (invariants)whenit is functioning correctly(i.e. it has
notyetbeencompromised). Sinceit canboot thehostinto a
known state,thecoprocessorIDS canbeexpectedto know
certainhostOSstate,suchasthelocationandvalueof key
datastructures. Givenkey datastructuresandinvariantson
their valuesand the way in which values are allowed to
change, the coprocessorcansamplethe hostOS to verify
thattheinvariantsarestill held.

3 Applications

In this sectionwe discussseveral monitoring applica-
tionsthatcanbeimplementedonthesecurecoprocessor.

3.1 Checking Kernel Data Structures Invariants

The first setof invariants we will examine concern in-
memory kernel datastructures.We canview the OS asa
statemachinewhosestatesarestoredin a collectionof in-
ternaldatastructures.Examplesof suchdatastructuresin-
cludetaskstruct, thedatastructurethatabstractsthenotion

of process,andinode, thedatastructurefor representing a
file 1. Theoperating systemreactsto external events(such
assystemcalls or network packet arrivals) by performing
appropriatemodifications on thesekernel datastructures.
Assumingthat, when the systemis in a securestate,the
valuesof thesekernel data structures are consistentand
exhibit a set of invariants, but when the systemis com-
promised theseinvariants no longer hold, the monitoring
systemcandetectbreak-ins (or break-in attempts)by con-
tinuously checkingfor consistenciesof crucial kerneldata
structures.

Our approach is to be distinguishedfrom previous ap-
proaches[12, 14], which focus on theeventsthatcausethe
kernel toenteranillegalstate,ratherthanonthestatesthem-
selves.For example,in Forrest’sapproach,onefirst profiles
the targetapplicationandcollectsa databaseof legitimate
systemcall sequences (signatures)madeby theapplication.
In theproductionsystem,theOSmonitors systemcallsex-
ecutedby theseapplications, andissuesa warning if a se-
quencedoesnotmatchany in thedatabase.Sinceeventsare
programdependent,e.g.,differentprogramstypically have
different signatures,one thusneeds to maintainan exten-
sivedatabaseof signaturescovering all programs.Frequent
softwareupgradesfurther complicatethisproblem. Ourap-
proach, on the otherhand, tries to abstractthe validity of
statesinto invariants. Becauseweuseabstractions,wekeep
lessinformation. In addition, the invariantsdescribeprop-
ertiesof thekernel only, andthusaremuchmorestable.

3.1.1 Determining Kernel Invariants

To find out what theinvariants are,we implementeda ker-
nel module thatintercepts systemcallsandrecords theval-
uesof crucial datastructuresat the entry of eachsystem
call. We thencomparethevaluetraceof a correctOSwith
thatof a compromisedOSfor a givenattacktakenfrom an
databaseof knownexploit programs,andsearchfor system-
atic differencesbetweenthepair of values.Thesystematic
differencespotentially highlight the invariantsthatarevio-
lated.

We definetwo typesof invariants:global invariants and
application-specific invariants. Global invariants are in-
variants that apply acrossthe entireoperating system,in-
dependentof the programsrunning on top of the OS. Ex-
amplesof globalinvariantsinclude immutability of theker-
nel imageandimagesof crucialsystemprograms,andim-
mutability of kernel datastructuressuchassystemcall ta-
bles.Application-specificinvariants,on theotherhand, de-
pendonthespecificnatureof theapplicationrepresentedby
thekernel datastructuresin question. For example, a nor-
mal userprogram’s uid shouldnever change to root. This

1Unless otherwise explicitly stated, we baseour discussionon the
Linux operating system.



invariantcertainlydoesnotapplyto programssuchassu.

3.1.2 Detecting Violations

Oncethe invariantsaredetermined, it is relatively easyto
detectviolations against theseinvariants. For global in-
variantssuchasimmutability of kernelimage,themonitor
computesa checksumover theimageat (secure)boottime,
andperiodically recomputesthechecksum andcomparesit
with the storedvalue. For application-specificinvariants,
themonitor determinesthe typeof application by its name
(i.e. thecommandline field of thetaskstructure), andloads
appropriateinvariantsaccording to theapplication type. It
thenperiodically samplesthevaluesof relevant datastruc-
turesandchecksthevaluesagainst theinvariants.

3.1.3 An Example

Let’s lookatanexampleinvariantthatwederiveby running
a local-root exploit program[2] andcomparingthechanges
in the taskstruct valuesbetweena successfulattemptand
those of a normal user program. The attack program,
ptrace24, works by exploiting the racebetweenptrace
andexecve andinjectingarbitrary code into a setuidpro-
gram. Table3.1.3shows the fields of the taskstruct data
structure that exhibit different change patterns depending
onwhethertheattacksucceedsor not.

We derive the following invariants for normal user-
programsfrom theabove data.

1. uid should remainthesamethroughout execution.

2. euid, suid and fsuid shouldnot be different from the
original uid for anextendedperiodof time.

To checkthe invariants, the monitor periodically scans
thevaluesof therelevant fieldsof thetaskstructurefor ac-
tive processes,andvalidatesthe valuesagainst the invari-
ants. Note that themonitor needsto storetheold valueof
uid for eachprocess.

Thissimpleexample illustratesthatit is possibleto infer
invariantsbyprofilingknownexploits andusetheinvariants
to detectill-behavedprocesses.

To testthegenerality of this invariant,we examined an-
otherexploit program[3] thatusesa different techniqueto
gain control of the system. A bug in the traceroute
programcausesbuffer overflow andallows arbitrary code
to beexecutedon the stack. The invariantsareessentially
thesameastheptraceexploit. This is not particularly sur-
prisingbecausebothexploits attackthesystemby becom-
ing theroot, whichrequiresachangeof theuid field to root.
However, it demonstratesthat the invariants areapplicable
to exploits of thesamenature(in thiscase,localroot exploit

through setuidprograms),andthusonly onesetof invari-
antsareneededfor theseexploits even though they differ
dramatically in themethodologyof attacking.

3.2 File Integrity Checking

Another important correctnessproperty of a systemis
the integrity of systemfiles on disk. The monitoring sys-
temcanindependentlyscanthedisk,computechecksumsof
systemfiles,andcomparestheresultsagainstthosestoredin
a database. This is similar to theTripwire [9] commercial
product. The differencebeingthat the monitoring system
andthe checksumdatabaseresideon the securecoproces-
sor, insteadof onthehostsystem,andarethusnotvulnera-
ble to attacks.

3.3 Virus Detection

Themonitoring systemcanalsoscantheentirememory
for known viruses. Again because the monitor resideson
the coprocessor, it is much less intrusive than a tool like
NortonUtilities.

4 Discussion

Sincethemonitoring systemis basedonsampling, there
is no guaranteethat the attackis detectedin time. How-
ever, we canreducethis likelihood through control of the
placement of samples,thenumberof samples,thesampling
period, and the perioddistribution. Sampleplacement is
driven by the number of attacksthat canbe detectedand
theaccuracy of thedetection.Obviously, asinglepoint that
detectsall errorswith perfectaccuracy would be the best
case. Sincethis is unlikely, we can increasethe number
of samplesuntil we have sufficient coverage.However, the
numberof samplesis limited by thecomputing speedof the
coprocessor.

Oneway to reduce this costis to identify dependencies
betweensamplingpoints. Only whenonesampleis trig-
geredareits dependentssamples,andothersaredelayedor
removedtemporarily. Anotherway is to adaptively change
thesamplingfrequency basedontheactualstateof thesys-
tem. For instance,we could raisethe samplingratewhen
suspiciousevents aredetected,suchaswhena processis
running with root or setuidprivilege, and slow down the
rate once suspicious events ceaseto exist. This way, the
time window for anundetectedattackis smallerat timesof
higher risk. Finally, wecanvarytheperiodic distributionof
thesamplingto reduceits predictability.

Another limitation of our current monitor is that it is
basedon the PCI bus which providesonly limited control
over the host. Ideally, we would like to be ableto usethe
hostJTAG bus[6]. TheJTAG busis ahardwaredebugfacil-
ity thatcanbeusedto controlperipheralsin thehost.That



SampleSequenceof SampleSequenceof
A SuccessfulAttack A NormalProcess

Field 1 2 3 4 1 2 3 4

flags 64 0 256 256 64 0 0 0
uid 500 500 0 0 500 500 500 500
euid 500 0 0 0 500 0 500 500
suid 500 0 0 0 500 0 500 500
fsuid 500 0 0 0 500 0 500 500
cap effective 0 x x x 0 x 0 0
cap permitted 0 x x x 0 x 0 0
user x x y y x x x x

Table 1. Sampled values of fields of taskstruct for a successful attac k and a normal user process.
Shown above are a sequence of 4 sample points taken at 4 diff erent system call entr y points. For
simplicity reasons, onl y a subset of sample point s are presented here . For the flags field, 64 means
forked but not exec, 256 means used privileg es. For the cap effective , cap permitted, and user fields,
x means non- zero value , and y means a non-z ero value other than x.

is, stoptheCPU,inspectits state,andresumeexecution,or
inspect/changethestateof memory or any othercontroller
attachedto thebus. TheJTAG approachcanthustake pre-
ventative/remedy stepswhenananomalyis detected.There
is howevera tradeoff betweencostandeffectiveness.JTAG
is chip-dependent andthusmuchmoreexpensive thenthe
generic PCI-basedsolution. However, if thePCI approach
is promisingwemayexplore theJTAG approachsowecan
assertgreatercontrol over thehost.

5 Conclusion

In this paperwe proposedbuilding intrusiondetection
systemsusing external securecoprocessors.Becausethe
coprocessorrunsindependentof thehost,a compromiseof
thehostdoesnotaffect thefunctionality of theIDS.Thead-
ditional securityfeaturesof thecoprocessorensurethatthe
hoststartsfromasecurestate,andthatmessagessentby the
coprocessorcanbeauthenticated andtrusted.Wediscussed
a seriesof possiblemonitoring applications, andour early
resultsdemonstratedtheviability of this approach.

References

[1] IBM PCI Cryptographic Coprocessor General In-
formation Manual, May 2002. Available at
http://www.ibm.com/security/cryptocards.

[2] Ptrace2.4.Availableat http://packetstormsecurity.org/0203-
exploits/ptrace-dark.c.

[3] Tracerouteexploit + story. Available at http://security-
archive.merton.ox.ac.uk/bugtraq-200010/0084.html.

[4] J. M. A. Mishra and W. Arbaugh. The co-
processor as an independent auditor. Available at
http://www.missl.cs.umd.edu/komoku/documents/coauditor.ps.

[5] S. N. Chari andP. Cheng. Bluebox: A policy driven, host-
basedintrusiondetectionsystem.In Proceedingsof the2002
NetworkandDistributedSystemSecurity, February2002.

[6] IEEE. IEEE standardtestaccessport andboundary-scanar-
chitecture,IEEEstd1149.1b-1994.

[7] R. P. R. S. L. v. D. S. W. S. J. Dyer, M. Lindemannand
S.Weingart.Building theibm 4758securecoprocessor. IEEE
Computer, 34(10):57–66,2001.

[8] S. W. S. J. Dyer, R. PerezandM. Lindemann. Application
support architecturefor a high-performane, programmable
securecoprocessor. In 22nd National Information Systems
SecurityConference(NISSC), October1999.

[9] G.H. Kim andE.H. Spafford. Experienceswith tripwire: Us-
ing integrity checkersfor intrusiondetection.In SystemAd-
ministration,NetworkingandSecurityConferenceIII , 1994.

[10] E. G. M. Bernaschiand L. V. Mancini. Operatingsystem
enhancementsto prevent themisuseof systemcalls. In Pro-
ceedingsof the7th ACM conferenceon Computerandcom-
municationssecurity, pages174–183,2000.

[11] V. Paxson.Bro: a systemfor detectingnetwork intrudersin
real-time.ComputerNetworks, 31(23-24):2435–2463,1999.

[12] A. S.S.Forrest,S.Hofmeyr andT. Longstaff. A senseof self
for unix processes.In Proceedings1996IEEESymposiumon
SecurityandPrivacy, 1996.

[13] S. W. S. Smith,R. PerezandV. Austel. Validatinga high-
performance, programmable securecoprocessor. In 22nd
National InformationSystemsSecurity Conference(NISSC),
October1999.

[14] D. WagnerandD. Dean.Intrusiondetectionvia staticanaly-
sis. In Proceedingsof the2001IEEESymposiumon Security
andPrivacy, 2001.

[15] D. Zamboni. Using internalsensorsfor computerintrusion
detection,2001. CERIAS TechnicalReport2001-42, CE-
RIAS, PurdueUniversity.

[16] Y. ZhangandV. Paxson.Detectingbackdoors. In Proceed-
ingsof 9th USENIXSecuritySymposium, August2000.

[17] Y. ZhangandV. Paxson.Detectingsteppingstones.In Pro-
ceedingsof 9th USENIXSecuritySymposium, August2000.


