Secure Coprocessor-based I ntrusion Detection

XiaolanZhang LeendertvanDoorn TrentJagier RonaldPerez ReinerSailer
IBM T. J. WatsonReseath Center
Hawthorne NY 10532USA
Email: {cxzhangeendert,jagertronpz,giler} @usibm.com

1 Introduction

Thegoalof anintrusiondetectiorsystem(IDS) is to rec-
ognize attackssuchthattheir exploitation canbe prevented.
Sincecompuer systemsarecomple, therearea variety of
placeswheredetectionis possible. For example analysis
of network traffic may indicatean attackin progress[11],
a compomiseddaemonmay be detectedby its abnamal
betavior [14, 12, 5, 10, 15], and subsequenattacksmay
be prevented by the detectionof backdmrs and stepping
stoneq16, 17].

Themostpopular archtecturefor IDSsis host-ba&edin-
trusion detection wherethe IDS runs asa monita on its
hostand collectsinformation usedto identify possiblein-
trusiors on thathost. Sincethe compomiseof ary system
servicegeneally resultsin the compromiseof the operat-
ing systems trustedcomputing base(TCB), theIDS is also
susceptibléo compromise,andthuscannotbetrusted.

In this papey we examire the effectivenessof secue-
coprocessoibasedntrusiondetection In thiscasethelDS
is run on a coprocessorratherthan on the host. Thus, a
compomiseof thehostdoesnotaffed thecopracessorand
self-potectionof the IDS monita is achieved Sincea co-
processorcan seethe memoy of the host, a coprocessor
IDS canverify thatthe hosts stateis correct. However, a
coprocessolDS cannd interpase the host’s execution the
way that a hostIDS can. Therefore, we needto identify
a new apprachthat enableseffective detectiongiven the
extemal nature of the copiocessar

The remairder of the pager is structuredasfollows. In
Section2, we definecoprocessoibasedintrusiondetection.
In Section3, we discussa seriesof applicatims possible
with this apprach,anddescribesxperimentsthatshav the
kinds of attacksthat canbe successfullydetectedy a co-
pracessor In Section4, we discusslimitations of this ap-
preachandhaow it canbe extendedto take preventive steps
whenanomaliesredetectedSection5 concludes.

2 Coprocessor-based Intrusion Detection

Coprocessebasedintrusion detectim meansthat host
datais collectedand processedy software running on a
copiocessoratherthanthe hostitself [4]. Typically, a co-
proeessorsharesnterfaceswith the hostprocessotthaten-
ablesit to examineandperhapsmodfy thestateof thehost.
Thenumberandchoiceof interfacesdeterninesthe degree
towhichintrusion detections possible We useasecureco-
proeessorbecauseét offers additiona securityfeatureshat
aredesirabldor anIDS (seeSection2.2)

2.1 Secure Coprocessors

A secue coplocessoris a tampetresistantcompuing
device designé to perfom critical tasksin anervironment
in which physicalattacksarepossible. Suchadevice canbe
usedto securelybod the hostsysteminto aknown state.

In the context of this pager, we examire useof the|IBM
478 PCI CryptogaphicCopraessoll, 7, 13]. The4733
consistsof a CPU, volatile and nonvolatile memay, and
cryptograghic acceleratrs. It is wrapped insidea tamper
responling securebowndary The device communicates
with the hostvia the PCI bus, wherebyit canissuecom-
mand to opeateon systemmemoy.

Thesoftwarearchited¢ure of theIBM 4758device is de-
signedto suppot geneit security applicatiors [8]. The
softwareinsureghatthedevice bootssecurelyandthatonly
authagized proglamscanexecuteonthedevice. Thedevice
alsocomeswith factoryinstalledcertificateghatallow it to
autheticateitself to exterral entities.

2.2 Advantages

Comparedo host-basedhtrusiondetectiontheuseof a
securecoprocessofor intrusiondetectiorhasthefollowing
adwartages:

1. Independence from the host OS. The securecopio-
cessoris an autoromots subsystenthat hasits own

opeatingsystemandapplicationsoftware. Its tamper
resistancealsoprovidesstrongintegrity protectian for
thelDS.

2. Narrow interface. Theinterfaceusedfor communi-
catingbetweenthe hostandthe securecopiocessoiis
simplisticandwell-definel. It is therefee muchmore
difficult to exploit theinterfaceandlaunchattacks.

3. Secure boot. The securecopracessorcanbe usedto
boa the hostinto a known statein which invariants
canbedefined

4. Trusted observer. Sincethesecurecoprocessois de-
signedto pratectits authenticationkeys agairst almost
ary attack,ary autheticatedstatementsnadeby the
securecopraessorcanbe fully trusted. This is very
usefd in a scenariovheremultiple copraessorsol-
laborate on a task or the IDS datais consumd by a
remde entity.

2.3 Monitoring

In addition to self-protetion, an effective IDS mustbe
ableto mornitor the contrdled opeationsthat may leadto
an intrusion In a host-tasedIDS, systemcalls and key
kerrel operatiors are often interpcsedsuchthat IDS data
canbecollectedandanalyzedIn acopraessoitbasedDS,
monitoring canna be dore by interpaition. The hostwill
cortinueto exeaute,sotheIDS paradign mustbealteredto
suitthis ervironmer.

Insteadof interpcsing opertions, we propase that the
coprocessoiDS basdts analysison systeminvarants. The
hostsystemas a whole maintairs certainintegrity proper
ties (invariants)whenit is functioning correctly(i.e. it has
notyetbeencompomised) Sinceit canbod thehostinto a
known state the copiocessotDS canbe expectedto know
certainhostOS state,suchasthelocationandvalueof key
datastructures. Givenkey datastructuesandinvariantson
their valuesand the way in which values are allowed to
chamge, the copro@ssorcan samplethe host OS to verify
thattheinvarantsarestill held.

3 Applications

In this sectionwe discussseveral moritoring applica-
tionsthatcanbeimplemernted onthe securecopraessor

3.1 Checking Kernd Data Structures|nvariants

The first setof invariants we will examire con@rnin-
memay kerné datastructures.We canview the OS asa
statemachinewhosestatesare storedin a collectionof in-
ternaldatastructures Exampes of suchdatastructuresn-
cludetask struct, thedatastructurehatabstractshenotion

of processandinode, the datastructurefor represeting a

file 1. Theoperatilg systenmreactsto extemal events(such
as systemcalls or network paclet arrivals) by perfaming

appopriate modfications on thesekerrel datastructures.
Assumingthat, whenthe systemis in a securestate,the
valuesof thesekernel data structues are consistentand
exhibit a set of invariarts, but when the systemis com-
pronised theseinvarants no longe hold, the moritoring

systemcandetectbreakins (or breakin attempts)y con-

tinuowsly checkingfor consistenciesf crucial kerneldata
structues.

Our apprachis to be distinguishedfrom previous ap-
proaches[12, 14], which focus on the eventsthatcausethe
kerné to enteranillegalstate ratherthanonthestateghem-
seles.For exanple,in Forrests appoach,onefirst prdfiles
the target applicationand collectsa databasef legitimate
systemcall sequence(signatues)madeby theapplication.
In the productionsystemthe OS monitors systemcalls ex-
ecutedby theseapplicatiors, andissuesa warnirg if a se-
guercedoesnotmatchary in thedatalase.Sinceeventsare
progamdepadent,e.g.,differentprogamstypicdly have
different signaturespne thus need to maintainan exten-
sive databasef signatuescoveling all programs.Frequent
softwareupgradedurthe complicatethis problem Ourap-
proach, on the otherhand tries to abstractthe validity of
statesnto invariarts. Becausave useabstractionsye keep
lessinformation. In additian, the invaiiantsdescribeprop-
ertiesof thekerrel only, andthusaremuchmorestable.

3.1.1 Determining Kernel Invariants

To find out whatthe invariarts are,we implementeda ker-
nel modde thatinterceps systemcallsandrecord the val-
uesof crucial datastructuresat the entry of eachsystem
call. We thencomparethe valuetraceof a correct OSwith
thatof acompomisedOS for a givenattacktakenfrom an
databasef known exploit progams,andsearctor system-
atic differencesbetweerthe pair of values.The systematic
differencegotertially highlight theinvariantsthatarevio-
lated.

We definetwo typesof invariants: global invariants and
apgication-speific invariants. Global invaiants are in-
variarts that apgy acrossthe entire opeating system,in-
depewlentof the progamsruming on top of the OS. Ex-
amplesof globalinvariantsinclude immutablity of theker
nelimageandimagesof crucial systemprogams,andim-
mutablity of kerrel datastructuressuchassystemcall ta-
bles. Application-specificinvaiiants,on the otherhand de-
pendonthespecificnatureof theapplicatiorrepresentedy
the kerrel datastructuesin question For examge, a nor
mal userprogam’s uid shouldnever chang to root. This

1Unless otherwise explicitly stateq we baseour discussionon the
Linux operding system.

invariantcertainlydoesnot applyto programssuchassu

3.1.2 Detecting Violations

Oncethe invariantsare determired, it is relatively easyto
detectviolations agairst theseinvariants. For global in-

variants suchasimmutablity of kernelimage,the monitor
computesa checlsumovertheimageat (securepoottime,
andperiodcally recompuitesthe checksm andcompaesit

with the storedvalue. For applicationrspecificinvariants,
the monita determiresthe type of applicatio by its nanme
(i.e. thecomnandline field of thetaskstructure) andloads
appopriateinvarantsaccordimg to the applicatian type. It

thenperiodcally sampleghe valuesof relevart datastruc-
turesandchecksthevaluesagairst theinvariants.

3.1.3 AnExample

Let'slook atanexanple invariantthatwe derive by runring
alocal-root exploit program[2] andcomparingthechangs
in the taskstruct valuesbetweena successfuattemptand
those of a nomal user progam. The attack progam,
ptrace24, works by exploiting the racebetweenpt r ace
andexecve andinjectingarbitray code into a setuidpro-
gram Table 3.1.3shaws the fields of the taskstruct data
structue that exhibit differert chang patterrs depenéhg
onwhethertheattacksucceedsr not.

We derive the following invariants for nomal user
programsfrom theabove data.

1. uid shoud remainthe samethroughaut execution.

2. euid, suid and fsuid shouldnot be different from the
original uid for anextendedperiodof time.

To checkthe invariants, the monita periodcally scans
the valuesof therelevant fields of the taskstructurefor ac-
tive processesand validatesthe valuesaganst the invari-
ants. Note thatthe montor needsto storethe old value of
uid for eachproaess.

This simpleexanpleillustratesthatit is possibleto infer
invariantsby profiling known exploits andusetheinvariants
to detectill-behaved processes.

To testthe geneality of this invariant, we examinel an-
otherexploit progiam[3] thatusesa differert technigqie to
gain contol of the system. A bugin thetraceroute
program causeshuffer overflow andallows arbitrary code
to be executedon the stack. The invariantsare essentially
the sameasthe ptraceexploit. Thisis not particuarly sur
prising becase both exploits attackthe systemby becom-
ing theroat, whichrequiresachang of theuid field to root
However, it demastrateshatthe invariants areapplicalie
to exploits of thesamenatue (in this case)ocalroat exploit

through setuidprogams),andthusonly onesetof invari-
antsare neededor theseexploits eventhowh they differ
dramatically in themethoalogy of attacking

3.2 Filelntegrity Checking

Anotherimporttant correctressproperty of a systemis
the integrity of systemfiles on disk. The montoring sys-
temcanindepadentlyscanthedisk,computecheclsumsof
systenfiles,andcompresheresultsagairstthosestoredn
adatabae. Thisis similar to the Tripwire [9] comnercial
product. The differencebeingthatthe monitoling system
andthe checksundatabae resideon the securecopoces-
sor, insteadof onthe hostsystemandarethusnotvulnera-
bleto attacks.

3.3 VirusDetection

The montoring systemcanalsoscanthe entirememay
for known viruses. Again becasge the monita resideson
the copraessor it is muchlessintrusive thana tool like
NortonUtilities.

4 Discussion

Sincethe montoring systemis basedn sampling there
is no guaanteethat the attackis detectedn time. How-
ever, we canreducethis likelihood through contiol of the
placemat of samplesthenurmberof samplesthesampling
periad, and the period distribution. Sampleplacemenhis
driven by the numter of attacksthat canbe detectedand
theaccuagy of thedetection.Olviously, asinglepointthat
detectsall errorswith perfectaccuray would be the best
case. Sincethis is unlikely, we canincreasethe numkber
of samplesuntil we have sufiicient coverage. However, the
nurmberof sampless limited by thecompuing speedf the
coprocessar

Oneway to redwce this costis to identify depenéncies
betweensamplingpoints. Only whenone sampleis trig-
geredareits depemlentssamplesandothersaredelayedor
remo/edtempaarily. Anotherway is to adaptvely change
thesamplingfrequeng basednthe actualstateof the sys-
tem. For instancewe could raisethe samplingrate when
suspiciousaverts are detected suchaswhena processs
runring with roat or setuidprivilege, and slov down the
rate one suspicios everts ceaseto exist. This way, the
time window for anuncdetectedattackis smallerat timesof
higherrisk. Finally, we canvarythe periadic distribution of
thesamplingto rediceits predctability.

Another limitation of our currert monitor is that it is
basedon the PCI bus which providesonly limited control
over the host. Ideally, we would like to be ableto usethe
hostJTAG bus[6]. TheJTAG busis ahardvaredehugfacil-
ity thatcanbe usedto control perigheralsin the host. That

SampleSequencef SampleSequencef
A SuccessfuRttack A NormalProcess
Field 1 [2]3] 4 1] 23] 4
flags 64 O | 256 | 256 | 64 0 0 0
uid 500 | 500 O 0 500 | 500 | 500 | 500
euid 500 O 0 0 500| O | 500 | 500
suid 500| O 0 0 500| O | 500 | 500
fsuid 500 O 0 0 500| O | 500 | 500
capeffective 0 X X X 0 X 0 0
cappermitted|| O X X X 0 X 0 0
user X X y y X X X X

Table 1. Sampled values of fields of taskstructfor a successful

attack and a normal user process.

Shown above are a sequence of 4 sample points taken at 4 diff erent system call entry points. For
simplicity reasons, only a subset of sample points are presented here. For the flags field, 64 means
forked but not exec, 256 means used privileg es. For the cap _effective, cap _permitted, and user fields,
X means non-zero value, and y means a non-z ero value other than x.

is, stopthe CPU, inspectits state,andresumeexecution,or
inspect/clangethe stateof memoy or ary othercortroller
attachedo the bus. The JTAG apgoachcanthustake pre-
vertative/remely stepswhenananomalyis detectedThere
is howeveratradedf betweercostandeffectiveness JTAG
is chip-cepen@nt andthus muchmoreexpersive thenthe
gereric PCl-basedsolution However, if the PCl apprach
is promisingwe may explore the JTAG appoachsowe can
assergreatercortrol overthehost.

5 Conclusion

In this paperwe proposedbuilding intrusion detection
systemsusing extemal securecopiocessors. Becausethe
coprocessorunsindepermentof the host,a comgomiseof
thehostdoesnotaffed thefundionality of theIDS. Thead-
ditional securityfeaturesof the copiocessoensurehatthe
hoststartsfrom asecurestate andthatmessagesentby the
coprocessocanbeauthenticaté andtrusted.We discussed
a seriesof possiblemonitaing applicdaions, andour early
resultsdemorstratedtheviability of thisapgoach.

References

[1] IBM PCl Cryptografic Coprocesso General In-
formation Manual, May 2002 Available at
http://wwwibm.com/security/cryptocards.

[2] Ptrace2.4.Available at http://pacletstormsecuritprg/0203-
exploits/ptrace-dark.c.

[3] Tracerouteexploit + story Available at http://security-
archive.merton.ox.ackibugtrag-200Q0/0084html.

[4] 3. M. A. Mishra and W. Arbaugh. The co-
processor as an independent auditor Available at

http://wwwmisslcs.umd.edikomokudocuments/cauditorps.

[5] S.N. ChariandP. Cheng. Bluebox A policy driven, host-
basedntrusiondetectionsystem.In Proceeding®f the 2002

Networkand DistributedSystenSecuity, February2002
[6] IEEE. IEEE standardestaccesgortandboundary-scarar

chitecture|EEE std11491b-1994

[7] R.P R.S.L. v. D. S. W. S. J. Dyer, M. Lindemannand
S.Weingart.Building theibm 4758securecoproessor|EEE
Computer34(10:57-66,2001

[8] S.W. S.J.Dyer, R. PerezandM. Lindemann. Application
suppat architecturefor a high-performae, programmale
securecoprocesso In 22nd National Information Systems

SecurityConfeence(NISSC) October1999.
[9] G.H.Kim andE.H. Spaford. Experiencesvith tripwire: Us-

ing integrity checlersfor intrusiondetection.In SystemAd-

ministration, Networkingand SecurityConfeencelll, 1994.
[10] E. G. M. Bernaschiand L. V. Mancini. Operatingsystem

enhanementso preventthe misuseof systemcalls. In Pro-
ceedingf the 7th ACM confeence on Computerand com-

municationssecurity pagesl74-183,2000.
[11] V. Paxson.Bro: asystemfor detectingnetwork intrudersin

real-time. ComputemMetworks 31(23-24):285-243,1999.
[12] A.S.S.Forrest,S.Hofmeyr andT. Longstaf. A sensef self

for unix processedn Proceedingd 996 [EEE Symposiunon

Securityand Privacy, 1996.
[13] S.W. S. Smith, R. PerezandV. Austel. Validatinga high-

performance programnable securecopracessar In 22nd
National Information System&ecuity Confeence(NISSC)
October1999

[14] D.WagnerandD. Dean.Intrusiondetectiorvia staticanaly-
sis. In Proceeding®f the 2001IEEE Sympaiumon Security
andPrivacy, 2001.

[15] D. Zamboni. Usinginternalsensorgor computerintrusion
detection,2001 CERIAS TechnicalReport2001-2, CE-
RIAS, PurdueUniversity.

[16] Y. ZhangandV. Paxson. Detectingbacldoors. In Proceed-
ingsof 9th USENIXSecuritySymposiumAugust 2000.

[17] Y. ZhangandV. Paxson.Detectingsteppingstones.in Pro-
ceedingof 9th USENIXSecuritySymposiumAugust2000.

