Signed Executables for Linux

Leendert van Doorn
leendert@uwatson.ibm.com

IBM T.J. Watson Research Center

Yorktown, NY

Gerco Ballintijn *

gerco@cs.vu.nl

Vrije Universiteit
Amsterdam, The Netherlands

William A. Arbaugh f
waa@cs.umd. edu

University of Maryland
College Park, MD

January 30, 2003

Abstract

We describe the design and implementation of
signed executables for Linux, which provide the
following strong integrity guarantees: the in-
ability to tamper with executables and the in-
ability to add new unauthorized executables.
Unlike other implementations, ours covers stat-
ically and dynamically linked executables as
well as executable scripts. In addition, we re-
duced the overhead of signature verification to
almost zero by caching the successful verifica-
tion results. The negligible overhead enables
signature verification to be used as a basic
building block for other applications of which
some are described in this paper.

1 Introduction

The ability to authenticate the originator of a
network connection and verify the integrity of
the transmitted data are considered the basic
building blocks of secure distributed systems.

*This work was done as part of an internship at
IBM’s T.J. Watson Research Center.

tPortions of this work were funded by an IBM Fac-
ulty Fellowship.

When it comes to executable files on such a
system, we appear to be satisfied with much
weaker integrity guarantees, even though exe-
cutables should be considered part of a secure
foundation as well. Hence, executables must be
authenticated and protected against integrity
attacks. This is conveniently achieved by digi-
tally signing them.

Signed executables have a number of interest-
ing properties. They prevent intruders from re-
placing executables with unsigned versions that
have a backdoor installed in them, they allow
system administrators to determine what exe-
cutables their users run and, if so desired, re-
strict the execution of them- essentially provid-
ing mandatory access control.

We have implemented digitally signed executa-
bles for the Linux operating system. While the
concept of a signed executable is a straightfor-
ward one, the implementation of it in a real
system raises many interesting and unanswered
questions. Among these are how to effectively
deal with:

e Dynamically linked executables.
e Executable scripts, and

e Performance.

Our system performs the digital signature check
by augmenting the activation process. Before
a binary file is executed, an embedded signa-
ture is verified and when it is valid the binary
is executed. This mechanism is easy to imple-
ment for statically linked executables. Dynamic
executables, unfortunately, are problematic in
this model because they load and run additional
code after verification. That is, what is verified
is a subset of what is running. We solve this
problem by the introduction of delegation cer-
tificates and make sure the signed portions of
the executables verify the dynamically loaded
code before executing it. A similar technique is
used for executable scripts.

In order to ensure widespread adoption, the sig-
nature verification must have an almost negli-
gible performance overhead. In our system we
achieve this by introducing a signature cache
which contains the results of all previous valid
signature verification checks. Once an exe-
cutable has been verified successfully, this result
is cached and future verifications are skipped-
provided the file has not been modified. This
cache dramatically reduces the performance
overhead of our system. Finally, providing this
dramatic increase in security capability requires
less than five hundred lines of new code to the
kernel.

In the next section, we discuss the issues in-
volved in using digital signatures and the guar-
antees our system provides. Section 3 describes
the implementation of our system: static and
dynamically linked signed executables, signed
executable scripts, and the signature cache.
Section 4 discusses some of our experiences with
signed executables and includes performance
measurements. Section 5 describes a number
of useful applications our work and is followed
by a future work discussion in Section 6. Re-
lated work is described in Section 7.

2 Design Issues

In the design of our system we were primarily
focused on providing the following two integrity
guarantees:

e Prevent the modification of authorized ex-
ecutables, and

e Prevent the addition of unauthorized exe-
cutables.

Central to these guarantees is the notion of an
external, possibly off-line, authorization pro-
cess that determines whether an executable is
allowed to be executed on a given set of sys-
tems. The exact nature of this process is out-
side the scope of this paper. In this paper, we
are primarily concerned with the implementa-
tion of the enforcement mechanism.

In our system we opted for digitally signing
individual executables rather than using ex-
tended filesystem attributes [6] or a signature
database. The use of extended attributes has
the advantage that it allows all files to be
signed (i.e., configuration files, databases, C
programs), but has the disadvantage that it
does not work on filesystems that do not sup-
port extended attributes or remote file systems.
Remote filesystems are especially problematic
since we need an additional mechanism to en-
sure that the remote server is presenting the
true extended attributes. In addition, the im-
plementation overhead for extended attributes
is considerable, and we wished to keep our im-
plementation limited to a small set of changes.

The use of a signature database has the advan-
tage that it does not require the modification
of the executable itself, but has the disadvan-
tage that it needs to be updated every time a
new executable is added or modified. The en-
tire database has to be signed which requires
invoking the authorization process on every up-
date. The other disadvantage is that the sys-

tem administrator has to manage two separate
files, the executable content and its signature,
instead of one.

In our system, we attached the signature to
the executable content. This has the advan-
tages that we only deal with a single container,
and the implementation requires only a small
number of kernel modifications. To permit
flexibility, we added attributes to the signa-
ture, and rather than inventing our own for-
mats used standards as much possible. Hence
we use ELF [7] for our executable binaries, the
PKCS#7 [8] format for storing our signatures,
and the X.509 [19] format for storing public key
certificates.

Our system ensures its integrity guarantees for
executables at load time. It does not provide
protection against run-time attacks such as code
injection attacks (e.g., buffer overflows). These
should be handled at a different level.

The current implementation of the system is
vulnerable to two attacks. The first attack
replaces the public key used to verify signa-
tures with a new public key known by the
attacker. The attacker then re-signs some of
the binaries he/she is interested in. This at-
tack is possible since we currently use a file,
/etc/certificate, to store the public key.
This attack can be countered by using a secure
boot mechanism, as described in Section 5.

The second attack is an overwrite or downgrade
attack. In this attack, the hacker has gained ac-
cess to a machine and copied, for example, the
current signed version of the ftp daemon, say
wuftpd. After a month or so, when the next
wuftpd bug is discovered, the system adminis-
trator installs a new and improved signed ver-
sion of the ftp daemon. The attacker now re-
places the new signed version with the older
signed version, which has the known bug and
for which the attacker presumably can exploit.
This attack is undetected by our current system
since it does not keep any state on individual
files.

Preventing this kind of attack either requires
creating a new key-pair and resigning all ex-
ecutables or keeping a signed revocation list.
Since this list will grow arbitrarily, revocation
records cannot be deleted, we need to purge
the list by creating a new key and resign all
executables. None of this is supported by our
current implementation.

3 Implementation

We implemented the signature checking for ex-
ecutables using the ELF format [7]. The Ex-
ecutable and Linking Format (ELF) standard,
describes the structure of object files. It dis-
tinguishes three types: executable files, shared
object files, and relocatable files. Our work fo-
cuses on the first two types since relocatable
files are not used in program execution— only
during program creation. The ELF format is
a convenient implementation vehicle since it al-
lows extensions to the basic format. Adding
signatures to other formats, such as COFF or
a.out, is possible but requires a certain amount
of shoehorning. Owur current kernel only sup-
ports the ELF format so that applications can-
not bypass the signature verification mecha-
nism.

All ELF object files follow the same general
This structure distinguishes two
views of an object file: linking, and execution.
Since we deal with signatures on a per exe-
cutable granularity, we are interested only in
the execution view. In the execution view, an
ELF object file consist of four parts, as shown
in Figure 1: a general ELF header, the pro-
gram header table, a sequence of segments, and
an optional section header table. The general
ELF header gives global information on the ob-
ject file, like its type and intended platform.
The program header table lists the segments,
and provides their characteristics, such as the
type of segment, size, and offset. The seg-
ments contain the actual code and data that

structure.

ELF Header

Program header table

Segment 1 (text)

Segment 2 (data)

Section header table
(optional)

Figure 1: ELF object file format (execution
view).

will be loaded into memory when the executable
is started. The file ends with the optional sec-
tion header table that stores information used
during program creation.

For our signature checking implementation, we
introduce a new type of ELF segment: the sig-
nature segment. This segment contains the dig-
ital signature of those parts of the executable
that are used during execution. More specifi-
cally, the signature covers the ELF parts listed
below:

ELF header.

All program headers.

All loadable segments, and

The interpreter segment.

The rationale behind signing these ELF por-
tions is described in the sections below.

We use the PKCS#7 [8] format for our digi-
tal signatures implementation. A human read-
able example of such a signature is shown in
Figure 2 which is taken from the /bin/1s pro-
gram. We chose the PKCS#7 format since it
is extensible, allowing us to store extra infor-
mation in the future. It is also useful that it
is a well-known format with publicly available
implementations, allowing us to implement our

OBJECT IDENTIFIER signedData // content type

INTEGER 1 // version

OBJECT IDENTIFIER md5 NULL // digest algorithm
OBJECT IDENTIFIER data // content type
INTEGER 3 // version

OCTET STRING // key identifier

68 78 2A 64 3D E2 50 47 B7 E7 90 94 21 F9 F5 FF
B6 94 D2 BF
OBJECT IDENTIFIER md5 NULL

OCTET STRING // signature data
OE 64 20 D1 2D 23 OF 26 61 B1 86 39 02 8F 12 27
OF CA 97 OA BO A2 C2 5E E5 7D 4F 3D DA 96 39 B9
62 7F 1D 60 70 64 7F CE B2 D6 62 F4 74 61 CD 68
F2 A2 FB A3 03 5F 7F 6A 66 88 C6 6B 4B 6F 70 E5
81 11 C8 35 DE D2 B4 6A EF 9F AE 76 CC DB 74 AD
D7 85 6A EC 64 A9 2A BA F9 19 5E E1 EA 67 Bl 12
EC C4 7A 30 B8 4F 99 40 A5 F7 68 62 C5 CB DE BB
BD 64 3E F6 29 C2 45 09 01 C3 63 51 81 36 B7 DA

Figure 2: Simplified dump of /bin/1s’s (CMS)
signature.

system quickly. The signature is created using
the MD5 secure hash function and the RSA en-
cryption scheme [11]. However, given the pos-
sible weaknesses of MD5 [2], we expect to use
a different secure hash algorithm in the future,
e.g. SHAL.

3.1 Statically Linked Executables

The actual signature verification is performed
during the execve() system call. During this
system call the memory image of the current
process is discarded, and a new memory im-
age is created using the executable file, given
as a parameter. When execve () is called by a
process, the kernel first determines the actual
binary format of the specified executable. Once
determined, a loader for the specific binary for-
mat is called— in our case that is the ELF binary
loader.

The ELF loader continues the loading process
by first loading the general ELF header and
then the program header table. A scan of the
program header table indicates which segments
are needed to create the new memory image.
These segments are marked as loadable. The

// digest algorithm
OBJECT IDENTIFIER rsaEncryption NULL // encryption algorithm

Linux kernel does not actually load the loadable
segments into memory, but instead uses the ker-
nel’s memory mapping capabilities. Mapping
the loadable segment into the process’ memory
is more efficient, because it results in loading
only those pages that are actually used. After
the segments are loaded, the kernel returns con-
trol to the process at the start address specified
in the general ELF header.

To secure the execution of an executable file,
we need to sign those sections of the file that
can actually influence its execution. For a stati-
cally linked executable that includes the general
ELF header, the program header table, and the
loadable segments. A potential attacker can-
not interfere by modifying, creating, or delet-
ing segments, without also invalidating the ex-
ecutable’s signature.

Signature verification is straightforward in the
case of statically linked executables. It consists
of computing the secure hash function over the
general ELF header, program header table, and
loadable segments, and using the public key to
verify the outcome. The public key used during
signature verification was already loaded from
the /etc/certificate file during kernel ini-
tialization.

A slight problem arises when the verification
fails. Since the original memory image has been
discarded, there is no running program to re-
turn an error code. We decided to let the pro-
cess die on a signal to allow its parent process
to notice the error condition.

An important assumption that we made is that
an executable cannot be changed during exe-
cution. Since the verification occurs prior to
execution, there is the possibility that an at-
tacker might change the executable file while it
is in use. This is particularly important in the
presence of demand loaded executables. Writ-
ing to the executable file after it is verified,
might allow unverified code to be introduced
when pages are reloaded from the executable
by the virtual memory system.

Normally, this is not a problem since the ker-
nel does not allow an executable to be changed
during execution. This requirement can, how-
ever, only be enforced for files on a local filesys-
tem. Files on a remote filesystem, such as NFS,
can be changed without the local kernel being
aware of it. The only way to avoid this prob-
lem is to actually load the executable prior to
verification. This way a local copy is made of
the contents that cannot be changed after ver-
ification.

3.2 Dynamically Linked Executables

The execution model for a dynamically linked
executable adds two steps to the static one.
As in case for a statically linked executable,
the kernel begins with loading the general
ELF header and program header table. The
execve() system call identifies a dynamically
linked executable when it finds an interpreter
segment in the program header table. The in-
terpreter segment stores the path to the dy-
namic linker, usually /1ib/1d.so on Linux.

After mapping the loadable segments, the ker-
nel also maps the dynamic linker into the pro-
cess’” memory image. The kernel then passes
control to the dynamic linker, allowing it to
load some or all of the dynamically linked li-
braries. The dynamic linker is either an ex-
ecutable or shared object file. Note that the
dynamic linker is actually part of the process’
memory image.

The content of a process’ memory image is de-
termined by three sources: the executable, the
dynamic linker, and the dynamically linked li-
braries. To ensure the proper creation of the
memory image, we must sign the loadable seg-
ments from these sources. But, we also must
sign the interpreter segment and the linking in-
formation used by the dynamic linker. This
information is stored in the dynamic segment.

The signature verification occurs immediately

after the segments are mapped. For dynam-
ically linked executables, this means that the
kernel must verify both the executable, and
the dynamic linker must verify the dynamically
linked libraries. This results in the verification
of dynamically linked libraries in user space.

The addition of the interpreter segment to the
lists of segments requiring signing is a simple
extension of the static executable verification
model. There is, however, no need to add the
dynamic segment to the signature check since
it is always located inside another loadable seg-
ment, and is thus covered by the fact that we
sign all loadable segments. If an executable or
shared object file would have a separate dy-
namic segment, that segment would need to be
signed and verified as well.

3.3 Script Executables

For script executables, we use the same indi-
rection step as used for dynamically linked li-
braries. When a script is started, the kernel
searches for a binary loader, as usual. However,
when the kernel determines that the executable
file is actually a script, it loads the script inter-
preter instead, giving the script as parameter.
The interpreter will then load and interpret the
script. To support scripts we must modify the
script interpreter to verify the signature of the
script. The script interpreter then performs a
role similar to the dynamic linker.

Script executables do pose several problems.
The first problem is that we need signature veri-
fication functionality in every script interpreter.
This can lead to a rapid increase in the num-
ber of places where signatures are verified, com-
pared to the base solution where only the kernel
and the dynamic linker performed the check. A
second problem is that scripting languages fre-
quently allow user input as executable content.
This content is not signed, and will thus allow
the execution of arbitrary code.

Kernel signature cache

Open for

Before verification L
destroy ~ Writing

ch%\

device number
inode number

device number

y inode number
device number

After verification .
inode number

Figure 3: Kernel signature cache operations.

3.4 Signature Cache

Signature verification unfortunately signifi-
cantly slows the startup time of programs.
Since all segments are completely loaded to
compute the secure hash function, the perfor-
mance gain of dynamic loading of executables is
lost. To avoid this loss of performance, we need
to avoid the signature verification when possi-
ble. The signature actually does not need to
be computed every time it is executed. If the
kernel knows it has verified an executable file
before, and can determine that the file has not
changed afterwards, it can simply reuse the pre-
vious result. This is, in fact, a signature cache-
amortizing the verification cost across multiple
invocations.

The kernel uses the signature cache to asso-
ciate a verification result with an executable
file. When the kernel is about to verify an exe-
cutable file, it looks in the cache for a previous
result, and after verifying an executable file the
results are stored in the cache. The kernel does,
however, need to know that an executable file
has changed since its verification result needs to
be purged from the cache when that happens.
This means we have to check every potential
file change. Since this implies checking every
write() system call and a significant perfor-
mance degradation, we chose to simply look at
the open() call. When a file is opened for writ-
ing, its signature will be purged, as shown in
Figure 3.

Remote filesystems also pose a problem for the

signature cache. Since the kernel cannot see all
the changes made to a file on a remote filesys-
tem, it can potentially cache a verification re-
sult while the file has been modified. For this
reason, the signature cache can not be used
with remote filesystems.

A second problem is that a signature cache
can only be effective if its results are actually
reused. This is not a problem for the kernel,
but since the dynamic linker runs in user space,
it can not trust the verification results of the
dynamic linkers in other processes. A simple
way to avoid this problem is to let the kernel
perform the actual signature verification, and
present this functionality to a process via a new
system call. This new system call, verify(),
takes an open file descriptor as argument and
validates it’s signature and returns the result.
If the signature is valid, it is also added to the
cache. This way the dynamic linker does not
have to verify a signature itself- it simply asks
the kernel. This is straightforward for both ex-
ecutable and shared object files since they all
share the ELF format. Scripting languages fit
less well in this model, and their result is cur-
rently not cached.

4 Performance

We measured the performance of our system
using a set of sample applications that are in-
dicative for a development system. Table 1
summarizes the performance measurements of
our system under a typical application load.
We measured the execution time in three situa-
tions: the signature verification turned off, the
signature verification enabled but the signature
cache disabled, and the both signature verifica-
tion and cache enabled. The first measurement
gives an indication of the original performance
while the later two show the impact of signa-
ture verification and the impact of the cache. In
all cases, the file/buffer cache was warmed by
calling the program to be measured ten times.

The system we used for our measurements con-
sisted of a 900MHz Athlon with 128MB mem-
ory running RedHat 6.2 and a 2.2.16 Linux ker-
nel. For our implementation we tried to reuse
as many available components as possible. For
signature verification in the kernel, we used the
RSAREF [17] library and modified the existing
ELF loader. These modifications were small
and consisted only of 482 lines of code.

The overhead for signature verification (with-
out the cache) is significant!, in some cases even
96% of the execution time is due to signature
checking. This overhead disappears completely
as soon as we introduce the signature cache-
since no verification is required with a cache
hit. The fact that signed executables with a
signature cache are slightly faster than unveri-
fied executables is a curious result. While the
numbers are within the margin of error they
might be caused by some as yet unexplained
prefetch effect within the VM subsystem.

Table 2 shows the impact of signature verifica-
tion during the system bootstrap process. The
performance numbers are consistent with the
previous results and show that the overhead
with a signature cache becomes negligible.

5 Applications

The signed executables described in this paper
form the building blocks for a number of in-
teresting applications and extensions. In this
section we will look at four of them. They in-
clude: secure boot, system administration, ca-
pabilities, and application identification,

Secure boot is a procedure whereby the initial
program loader (usually the BIOS) verifies the
signature of the bootstrap loader before it actu-
ally executes it. In turn, the bootstrap loader
will verify the signature of the operating sys-

'Part of this overhead is due to the use of RSAREF
rather than an optimized implementation of RSA.

‘ Program ‘ Unveriﬁed‘ Verified ‘ Veriﬁed—l—C’aché
1s / 1261 31799 1243
sh /dev/null 2710 58084 2670
gcc hw.c 294634 522311 294634
vi -c :q 4377 49389 4359

Table 1: Application execution time (in psec).

‘ Program

‘ Unverz’ﬁed‘ Verified

‘ Verified+ Caché

‘ boot to login prompt ‘

20 |

35 | 21 |

Table 2: Execution time (in sec).

tem kernel before bootstrapping it. Our work
is a logical continuation of this secure boot-
strap process. Where the secure boot proce-
dure guarantees that only appropriately signed
kernels are started, our work extends this by
guaranteeing that only appropriately signed ap-
plications are executed.

Integrating signed executables with a secure
boot mechanism prevents an attack on the root
certificate that is used by the kernel to ver-
ify the signatures. In our current system the
root certificate is stored in a well-known file,
/etc/certificate, which could potentially be
replaced by an attacker with a different certifi-
cate. When using secure boot, the bootstrap
loader would pass the certificate to the kernel
or verify that the one stored in the filesystem
is valid before actually booting the kernel. An-
other way to prevent this attack is to store the
certificate on a token such as a smartcard, but
this too requires a secure boot mechanism to
ensure that the certificate is actually used.

The second use of signed executables is for sys-
tem administration. Signed binaries can be
used to control what the user is permitted to ex-
ecute on a system. It is easy to imagine multiple
profiles such as, a web server, a firewall, a de-
veloper machine, or a secretary machine. Each
executable would be classified into the groups
it belonged. These groups would then be stored
as signature attributes in each executable. At
boot up, the administrator would specify the

desired domain and the machine would only ex-
ecute the binaries belonging to that group. For
example, a secretary would be able to execute
a mail client and an office suite, but not the
C compiler, Perl, or any other system utility.
A firewall would be even more restrictive. The
advantage of using signature attributes is that
a single software distribution suffices for many
different uses and hence simplifies the mainte-
nance job for the administrator. An alternative
application of this mechanism would be to en-
force software licenses without having to keep
different software distributions.

Closely associated with tagged attributes is the
tagging of capabilities. Rather than storing the
setuid or setgid properties of an executable
in the filesystem they could be stored in the
signature attributes. This would prevent a po-
tential attacker from marking programs setuid
since that would require the possession of the
off-line secret key used to sign the binaries.

So far we have used digital signatures as a way
to authenticate an executable to the kernel.
They can also be used to identify themselves
to other applications. This is especially useful
for remote applications where the client wants
to establish the identity of the server. A remote
server can present its digital signature as proof
of this. Of course, this in itself is not sufficient,
it has to be signed by the kernel it is running
on in order to show that the server is not spoof-
ing the certificate. This works recursively. We

also need to know the authenticity of the kernel
which requires the bootstrap loader to vouch
for it. This requires authenticity guarantees for
the bootstrap loader and therefore requires a
secure boot mechanism. Eventually this leads
to a PKI with a shared root between the client
and the server from which trust is acquired.

The application identification mechanism lets a
client enforce to which version of the server it
wishes to communicate, on which version of the
operating system it runs, and which version of
the firmware it uses. This is especially useful
in the area of secure cryptographic coproces-
sors [18] that are used to store highly sensitive
data. It is crucial for a client to reliably estab-
lish trust in a server running on these devices
before committing data to it. In fact, knowing
what server is currently running on the device
is often not sufficient. Depending on the type of
application, additional information about what
else is running on the device and what ran in
the past may all be used by the client to deter-
mine its trust in the device.

6 Future Work

In the previous section we described a number
of applications that all use the signature mech-
anism as a basic building block. In this section
we look at more immediate future work.

In our current system we do not sign and ver-
ify kernel modules. Including these in our sys-
tem is straightforward and uses the same del-
egation mechanism we use for shared libraries
and scripts. Kernel modules are loaded and re-
located by a separate program, insmod, before
the prepared module image is mapped into the
kernel address space. To verify kernel modules
we need to enhance insmod to verify the mod-
ule’s signature before processing it.

The redirection of standard input into a script
raises several problems with only two possible

solutions. The first potential solution elim-
inates redirection from all authorized inter-
preters. And, the second requires that each
IO stream begins with an authorized signa-
Unfortunately, both solutions prevent
the use of the command line or on the fly
scripts. While this will annoy the system ad-
ministrators, this functionality violates one of
our design principles— preventing the execution
of unauthorized code. As a result, we will be
implementing the second solution which, fortu-
nately, maps closely with the approach already
taken with interpreted scripts.

ture.

7 Related Work

Integrity checking for applications has a long
history, but it is only recently that processor
performance has become sufficient to support
the use of public key cryptography within the
kernel. In this section, we present background
information on the related work to our effort.

7.1 Locus

The first to propose the use of integrity checks
based on message authentication codes and dig-
ital signatures were Pozzo and Gray in 1986 and
1987 [16, 15, 14]. Their goal was to prevent
viruses, and they implemented their system as
part of the Locus distributed operating system.
The idea was to place a digital signature on
each application. The kernel then took the re-
sponsibility for validating the signature. If the
signature did not match, then the application
was not executed. Thus a virus could infect a
file, but it could not propagate- essentially cut-
ting off the viruses vector. Unfortunately, the
computing power available to Pozzo and Grey
at that time was not sufficient to support the
use of public key cryptography. As a result,
the initial prototype only used the UNIX crypt
function to create a four byte fingerprint for
each “signed” file. The authors recognized that

such a mechanism was insufficient, but the in-
adequacy of processing power at the time pre-
vented a more robust solution. Fortunately, the
computing power now exists such that a mech-
anism as proposed by Pozzo and Grey is now
possible. But, Pozzo and Grey only addressed
the problem with a monolithic kernel. They
never addressed issues such as kernel modules,
shared libraries, nor shell redirection. Pozzo
and Grey did, however, identify that the use
of signatures on executables could implement a
strong form of access control.

7.2 Tripwire

Tripwire®pr0vides an excellent means for en-
suring the integrity of a filesystem [10, 9]. It has
been used for years by many sites to successfully
detect the effects of intrusions, i.e. the modi-
fication of binaries and/or configuration files.
Unfortunately, Tripwire’s fundamental flaw is
that it relies on the validity of the operating
system, the Tripwire binary, and the database
of signatures. If any of these items is modified
to provide incorrect results to hide malicious
changes, then the analysis by Tripwire is sus-
pect and likely to produce false negatives [5, 4].
Another major short coming of Tripwire is that
it does not perform its integrity checks in real
time, i.e. prior to the file or application be-
ing used. As a result, the compromise of a
site could be missed up to the length of time
between Tripwire checks. While Tripwire does
perform functions beyond the work described
this paper, e.g. integrity protection for non-
executable files, the drawbacks to Tripwire re-
main significant.

7.3 IBM 4758

The IBM 4758 secure cryptographic coproces-
sor [18] uses a signed packaging mechanism to
load executables into the device. The package
is signed by a developer key which was gen-
erated by the developer and signed off-line by

the IBM root key. This root key is only used
by the card to verify the developer signature,
which executable can be loaded is controlled by
the developer key. The signing information on
the executable is used in a mechanism called
outgoing authentication which is an initial ver-
sion of application identification. The later still
requires further study, especially in the area of
dynamic kernels and multiple device owners.

7.4 Authenticode

Microsoft currently uses several types of in-
tegrity checking. First, they have placed dig-
ital signatures on device drivers for Windows
2000 and before that Windows 98 [13]. The
windows kernel will not load a driver without
a valid signature. While this feature could be
viewed as a security feature, its implementation
was probably more of a configuration manage-
ment issue, i.e. prevent the loading of unap-
proved drivers so the machine doesn’t crash.
Finally, Microsoft implements a code signing
mechanism entitled Authenticode that places a
digital signature on ActiveX controls [12]. The
signatures on the controls are used in conjunc-
tion with local policy to determine if the control
will be executed, or ignored. In essence, provid-
ing a limited form of mandatory access control
as in the early Java security architecture [1].

7.5 Java Code signing

The signing of Java applications and applets
initially only supported an all or nothing ap-
proach to access control as in Authenticode.
Applications on the local filesystem were com-
pletely trusted with or without a signature. Re-
mote code was untrusted unless it contained
a valid signature. The current security archi-
tecture for Java, however, provides for a fine
grained access control mechanism [3]. In the
current security architecture, a local policy file
determines what, if anything, resources appli-

cations and applets can access. The policy

can, for instance, allow only those applications

signed by certain public keys to access local
files.

8 Conclusions

While integrity has long been a desirable prop-
erty for network and distributed security ef-
forts, it has, for the most part, been ignored
within modern operating systems. The result
is that add-on mechanisms such as Tripwire
were employed by a large set of users requiring
strong integrity guarantees. We believe that
such integrity mechanisms belong in the ker-
nel and below— for once integrity is lost, it can
not be easily regained. One of the may reasons
why strong integrity guarantees are not present
in modern operating systems is the incorrect
perception that such mechanisms incur a large
performance penalty. We have shown in this
work that such beliefs are misguided, and that
through the use of a signature cache strong in-
tegrity guarantees can be provided with only a
negligible performance penalty.

Acknowledgments

We would like to thank ANONYMOUS for
helpful comments on the paper. The authors
are working towards a public release of the soft-
ware described in this paper.

References

[1] D. Dean, E. W. Felten, and D. S. Wallach. Java
Security: From HotJava to Netscape and Be-
yond. In 1996 IEEE Symposium on Security
and Privacy, pages 190-200. IEEE, 1996.

[2] H. Dobbertin. Cryptanalysis of MD5 Com-
press, May 1996. Presented at the rump session
of Eurocrypt ‘96.

[3]

[10]

[13]

[14]

[15]

L. Gong. Inside Java 2 Platform Security: Ar-
chitecture, API Design, and Implementation.
Addison-Wesley, 1999.

Halflife. Bypassing Integrity Checking Sys-
tems. In Phrack, volume 7. 2600, September
1997.

Hoglund.

http:/ /www.rootkit.com.
IEEE. POSIX 1003.1e Draft Standard, Access
Control Lists, October 1997. Withdrawn,
http:/ /www.guug.de/ winni/posiz.1e/download. html.
Intel. Tool interface standard portable formats
specification (version 1.1), October 1993. Intel
order number 241597.

B. Kaliski. PKCS #7: Cryptographic Message
Syntax (Version 1.5). In Internet Request for
Comments (RFC) 23815. March 1998.

G. Kim and E. Spafford. Experience with
Tripwire: Using Integrity Checkers for In-
trusion Detection. In System Administra-
tion, Networking, and Security Conference III.
USENIX, 1994.

G. H. Kim and E. H. Spafford. The Design and
Implementation of TRIPWIRE: A File System
Integrity Checker. Technical Report TR-93-

071, Department of Computer Science, Purdue
University, November 1993.

A. J. Menezes, P. C. Van Qorschot, and S. A.
Vanstone. Handbook of Applied Cryptography.
CRC Press, 1997.

Microsoft. Authenticode Techonology. Mi-
crosoft’s Developer Network Library, October
1996.

Microsoft. Authenticode Signing of Device
Drivers. Presentation at Microsoft Professional
Developers Conference, September 1997.

M. M. Pozzo and T. E. Gray. An Approach to
Containing Computer Viruses. Computers and
Security, 6(4):321-331, August 1987.

M. M. Pozzo and T. E. Gray. A Model for

the Containment of Computer Viruses. In
1989 IEEE Symposium on Security and Pri-
vacy, pages 312-318. IEEE, 1989.

M. M. Pozzo and T. E. Grey. A Model for

the Containment of Computer Viruses. In
1986 Aerospace Computer Security Confer-
ence, pages 11-18, 1986.

RSA Laboratories. RSAREF®: A Crypto-
graphic Toolkit for Privacy-Enhanced Mail,
1994.

S. Smith and S. Weingart. Building a High-
Performance, Programmable Secure Coproces-

sor. In Special Issue on Computer Network
Security, volume 31, pages 831-860. Elsevier,
1990.

Windows rootkit.

[19] X.509. ITU-T Recommendation X.509 (1997
E): Information Technology - Open Systems
Interconnection - The Directory: Authentica-
tion Framework, June 1997.

