
FlexRTS: An extensible Orca run-time system†

Leendert van Doorn
Andrew S. Tanenbaum

Vrije Universiteit
Amsterdam, The Netherlands

ABSTRACT

FlexRTS is a dynamically configurable and extensible run-time system for Orca, a high
performance parallel programming system. It provides run-time and application program-
mers with full control over the implementation and placement of kernel and user-level
modules (device drivers, protocol stacks, thread packages, etc.). This allows programmers to
optimize the run-time system on a per application basis and take most leverage out of the
available hardware.

Keywords: operating systems, run-time systems, parallel programming, extensibility.

1. Introduction

It is hard for an application programmer to
take full advantage of existing hardware. This is
largely caused by a lack of control over the avail-
able abstractions. Many researchers have inter-
preted this as kernel abstractions and have proposed
mechanisms for extending or adapting these
[4, 5, 8, 11, 14]. Non-kernel abstractions, e.g. those
provided by a run-time system, are in theory easy to
adapt and extend, but in practice they are just as
rigid as kernel abstractions. The problem is even
worse for micro and smaller kernels where a lot of
the traditional operating services are off-loaded to
the run-time system adding to its complexity.

In this paper we argue that, in order for an
application to take full advantage of its hardware
and be most efficient, it should not only have the
ability to control and extend its kernel and system
servers, but also its run-time system. That is, the
programmer should be able to control which partic-
ular implementation of an abstraction is used, and
when necessary, replace it by one providing extra
functionality. Furthermore, the programmer should
be able to decide whether a particular implementa-
tion is situated in the kernel or user address space.
For example, consider a program that uses an
unreliable datagram service. Using late binding, the
invoker of the program can override the
programmer’s defaults and specify a different
�����������������������������������

†This is a revised version of a paper that has been submitted
for publication to the IEEE Sixth Workshop on Hot Topics
in Operating Systems (HotOS-VI).

implementation at run-time. This might include
using Ethernet hardware as its datagram service
when all its clients are known to be on the same
segment, and even loading the Ethernet device
driver in its own address space when it is not shared
among other processes. These kinds of decisions
have a major impact on the performance of a pro-
gram, but are unforeseen at compile-time.

In order to validate the viability of extending
run-time systems we are building a new flexible
run-time system for Orca [1] on top of the Parame-
cium [14] operating system. Orca is a distributed
and parallel programming language based on the
shared object model: a shared memory abstraction
that is encapsulated in objects. The Orca system is
designed for loosely coupled machines connected
by a high-speed network. The latency that is intro-
duced by network communication software is the
paramount performance bottleneck in the Orca sys-
tem. By reducing this we can improve the perfor-
mance of many course grained parallel applications
and in addition run a larger class of fine-grained
applications.

Our new run-time system, called FlexRTS,
allows the run-time programmer, application pro-
grammer, and even the user of the program to
specify the implementation of its modules. It even
allows modules to be placed securely in the kernel’s
address space and access kernel services directly.
Conversely, traditional kernel services, like device
drivers, can be placed in the run-time’s address
space. This is useful, for example, to reduce copy-
ing. All though we are using the Paramecium ker-
nel as our target platform, the techniques used are



- 2 -

general enough to be applied in other operating sys-
tems as well.

In the remainder of this paper we will
describe in section 2 Paramecium and its extension
model on which FlexRTS is based. Section 3
describes FlexRTS and discusses what components
are useful to extend. Section 4 describes an exam-
ple of efficient shared object invocation in FlexRTS,
followed by a related work discussion in section 5.

2. Extensibility in Paramecium

Paramecium [14] is a highly dynamic nano-
kernel-like system for building application specific
operating systems. Central to its design is a com-
mon software architecture for its operating system
and application components [7, 12]. Together these
form a toolbox. The kernel provides some minimal
support to dynamically load a component out of this
toolbox either in the kernel or in a user address
space and make it available through a name space.
Determining which components reside in user and
kernel space is established by the user at execution-
time.

To support the toolbox of components
approach, we use a simple, programming language
independent, architecture that provides object
instances and interfaces as its main abstractions. In
our architecture an object is a collection of methods
and instance data. Each object exports one or more
named interfaces. This provides support for evolv-
ing and generic interfaces. An interface is a set of
methods, state pointers, and type information.
Objects can be operated on only through the
methods in the interfaces they export. Objects are
relatively coarse grained.

When inserting object code into the kernel,
Paramecium takes the point of view that it is essen-
tially extending the trust relationship. Maintaining
this is one of the most important tasks of the kernel.
To extend trust, which is a well known security con-
cept, Paramecium uses a certification authority or
one of its delegates to sign components it deems
trustworthy. These are therefore permitted to run in
the kernel its address space. The component signa-
tures are validated at load-time. Depending on a
certification authority enables Paramecium to define
an informal security model rather than a formally
strict one necessary for automated verification. A
similar certification mechanism is currently being
used for down-loading code over the Internet [10].

Each object has its own instance name and is
registered in a hierarchical name space together
with one of its interfaces. The hierarchy is reflected
in the object’s name and is used by other objects to
bind to it. Standard operations exist to bind to an
existing object, dynamically load one from a reposi-
tory, and to obtain a different interface from a given

object interface. Binding to an object happens at
run-time. To reconfigure a particular service you
override its name. A search path mechanism exists
to control groups of overrides. When an object is
owned by a different address space the name service
automatically instantiates proxy interfaces.

The Paramecium kernel itself is relatively
small, 50KB on a Sun SparcClassic, a 50 MHz
machine, and its cross context IPC latency is less
than 2 µsec. The kernel defines a small number of
other services that we consider essential: memory
and context management (physical and virtual),
events (synchronous and asynchronous IPC), a
secure random number generator, and a device
manager. This last service arbitrates between
drivers to get access to devices. Everything else is
loaded on demand. This extreme position allows us
to determine exactly what components we need.

A word of caution is in order. All though the
system as we describe it is a general one, we do not
anticipate that every application programmer or user
will take advantage of its flexibility. It is probably a
small set of very special purpose applications (i.e.
parallel programs, set-on-top boxes and controller
software, high performance web and file servers,
routers and gateways, etc.), that will be specially
tuned to obtain the performance improvements.

3. An extensible run-time system for Orca

Orca [1] is a programming language based on
the shared object model: a shared memory abstrac-
tion. In this model the user has the view of sharing
an object among parallel processes and invoking
methods on it. It is the task of the underlying run-
time system to efficiently implement this view. For
example, in the current implementation a shared
object is either a single copy or fully replicated
depending dynamically on the read/write ratio of the
object state.

The Orca run-time system is responsible for
implementing I/O, threads, marshalling, group com-
munication, message passing, and RPC. With these
components it implements the shared object seman-
tics and many optimizations. The current run-time
system [2] implements a number of these com-
ponents and relies on the underlying operating sys-
tem for others. It is statically configurable in that it
requires rebuilding and some redesigning at the
lowest layers when it is ported to a new platform or
when support is added for a new device.

In FlexRTS we enhance the Orca run-time
system to take advantage of Paramecium’s extensi-
bility mechanisms. The ability to dynamically load
components enables us to specify new or enhanced
implementations at run-time. Combined with the
ability to load these implementations securely into
the kernel it is possible to build highly tuned and



- 3 -

application specific operating systems. Important
uses of extensibility for FlexRTS are: performance
enhancements, debugging, tracing, and controlling
individual Orca objects.

An individual object instance is controlled by
instantiating it in a programmer defined place in the
name space and controlling its search path. Name
spaces are defined per process. For example,
assume we have a component called
‘‘/program/shared/minimum’’, representing
a shared integer object. This shared integer imple-
mentation requires a datagram service for communi-
cating with other instances of this shared integer
object. By associating a search path with the com-
ponent name, we can control which datagram ser-
vice, registered under the predefined name
‘‘datagram’’, it will us. When no search path is
associated with a given name its parent name is
used recursively up to the root until a search path is
found. This allows us to control groups of com-
ponents.

The advantage of controlling user level com-
ponents at binding time is foremost performance
improvements, followed by debugging, and a sane
failure model. Individual shared object implemen-
tations can use different marshalling routines, dif-
ferent network protocols†, different networks,
debugging versions, etc. On machines where the
context switch costs are high, all of the protocol
stacks and even drivers for non shared devices can
be loaded into the run-time system to improve its
performance. In addition this can be used to reduce
the copying of packets [3].

Placing components into the kernel is useful
for performance improvements and availability.
The performance improvements are the result of a
reduced number of context switches and the direct
access to devices which are shared among other
processes. Drivers for these cannot be loaded into
user space.

On time-sharing systems it is often useful to
place services that are performance bottle-necks in
the kernel for availability reasons. These are always
runnable and usually do not get paged out. For
example, consider a collection of workstations com-
puting on a parallel problem with a job queue. The
job queue is a perfect candidate to be down-loaded
into the kernel. Requests for new work from a
remote process should preferably be dealt with
immediately without having to wait for the process
owning the job queue to be paged or scheduled in.

Hybrid situations where part of the com-
ponent is in the kernel and part in user space are
�����������������������������������

†The sequential consistency guarantees of Orca require
some cooperation between protocols that are used by other
shared object instances.

also possible. Take, for example, the thread pack-
age on our implementation platform. Because of
the SPARC architecture each thread switch requires
a trap into the kernel to save the current register
window set. To amortize this cost we instantiate the
thread package scheduler in the kernel, but its syn-
chronization primitives (mutexes, semaphores, con-
dition variables, etc) are instantiated in user and ker-
nel space for fast access.

Although possible, it is undesirable to load the
whole program into the kernel. It is important for
time-sharing and distributed systems to maintain
some basis of trust that, for example, can be used to
talk to file servers or reset machines. Adding new
components to it should be done sparingly.

4. Example: Efficient shared object invocations

To get some idea of the trade-offs and imple-
mentation issues in a flexible run-time system, con-
sider the following shared integer object:

OBJECT SPECIFICATION IntObject;
OPERATION value(): integer;
OPERATION assign(v: integer);
OPERATION await(v: integer);

END;

OBJECT IMPLEMENTATION IntObject;
x: integer;

OPERATION value(): integer
BEGIN RETURN x END;

OPERATION assign(v: integer);
BEGIN x := v END;

OPERATION await(v: integer);
BEGIN GUARD x = v DO OD END;

BEGIN x := 0 END;

Each method of this shared object instance
can be invoked remotely. For an efficient imple-
mentation we use a technique similar to optimistic
active messages [13, 15, 16]. When a message
arrives the intended object instance is looked up and
the method is invoked directly. When the method is
about to block it is turned into a regular thread.

To reduce the communication latency and
provide higher availability for this shared object
instance we map its code read-only into both the
kernel and user address spaces. This allows the
methods to be invoked directly by kernel and possi-
bly by the user. The latter depends on the place-
ment of the instance state. Under some conditions
the user can manipulate the state directly, others
require a trap into the kernel. Obviously, mapping
an implementation into the kernel requires it to be
signed before hand.

In this simple example, mapping the object
instance data as read/write in both user and kernel



- 4 -

address space would suffice, but most objects
require stricter control. To prevent undesired
behavior by the trusted shared object implementa-
tion in the kernel we map the object state as either
read-only for the user and read-write for the kernel
or visa versa; depending on the read/write ratio of
its methods. For example, when the local (i.e. user)
read ratio is high and the remote write ratio is high,
the instance state is mapped read/writable in the
kernel and readable in the user address space. This
allows fast invocation of the value and assign
methods directly from kernel space (i.e. active mes-
sages calls), and the value method from user
space. In order for the user to invoke assign it
has to trap to kernel space.

Another example of extending the kernel is
that of implementing Orca guards. Guards have the
property that they block the current thread until their
condition, which depends on the object state,
becomes true. In our example, a side effect of
receiving an invocation for assign is to place the
threads blocked on the guard on the run queue after
their guard condition evaluated to true. In general
the remote invoker tags the invocation with the
guard number that is to be re-evaluated.

For our current run-time system we are hand-
coding in C++ a set of often used shared object
types (shared integers, job queues, barriers, etc).
These implementations are verified, signed, and put
in an object repository. For the moment all our
extensions and adaptations involve the thread and
communication system, ie. low level services.
These services provide call-back methods for regis-
tering handlers. For a really fast and specialized
implementation, for example the network driver,
one could consider integrating it with the shared
object implementation.

To broaden our scope and get experience with
extending and adapting other parts of the system we
are considering porting the Java [6] virtual machine.
Reimplementing Java classes will most probably
impact other parts of the system that are currently
unexercised.

5. Related work

For the last four of years many research sys-
tems have been developed that focus on adapting
and extending operating system kernels
[4, 5, 8, 11, 14]. Paramecium distincts itself by using
a well-proven techniques: objects, dynamic loading,
and naming. Together with certification we push
these across the user-kernel level boundary.

Our unit of extension is much more course
grained than, for example, SPIN’s extensions or the
Exo-kernel’s ASHs. Consequently the mechanisms
for implementing extensions are also simpler, while
still giving us the extensibility we need.

Furthermore, in our system we allow place-
ment decisions to be made at run-time by the run-
time programmer, application programmer and even
the user of the program by overriding names.
Depending on the usage of a shared object its
environment can be changed to control which ser-
vices it uses. In addition, its implementation can be
placed in the kernel or in user address space. Apart
from Plan9 [9], which partly uses the same naming
ideas, we are not aware of a similar system.

References

1. H. E. Bal, M. F. Kaashoek and A. S. Tanenbaum,
Orca: a language for parallel programming on
distributed systems, IEEE Transactions on Software
Engineering 18, 3 (Mar. 1992), 190-205.

2. H. E. Bal, R. A. F. Bhoedjang, R. Hofman, C.
Jacobs, K. G. Langendoen, T. Rühl and M. F.
Kaashoek, Orca: a Portable User-Level Shared
Object System, IR-408, Department of
Mathematics and Computer Science, Vrije
Universiteit, July 1996.

3. H. E. Bal, R. A. F. Bhoedjang, R. Hofman, C.
Jacobs, K. G. Langendoen and K. Verstoep,
Performance of a High-Level Parallel Language on
a High-Speed Network, Journal of Parallel and
Distributed Computing, Feb. 1997.

4. B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, M.
E. Fiuczynski, D. Becker, C. Chambers and C.
Chambers, Extensibility, Safety and Performance in
the SPIN Operating System, Proc. of the 15th
Symp. on Operating System Principles, ACM
SIGOPS 29, 5 (Dec. 1995), 267-284.

5. D. Engler, M. F. Kaashoek and J. O. Jr., Exokernel:
An Operating System Architecture for
Application-Level Resource Management, Proc. of
the 15th Symp. on Operating System Principles,
ACM SIGOPS 29, 5 (Dec. 1995), 251-266.

6. J. Gosling and H. McGilton, The Java Language
Environment, Sun Microsystems, May 1995.

7. P. Homburg, L. van Doorn, M. Steen and A. S.
Tanenbaum, An Object Model for Flexible
Distributed Systems, Proc. of the 1st ASCI
conference, Heijen, The Netherlands, May 1995.

8. G. C. Necula and P. Lee, Safe Kernel Extensions
Without Run-Time Checking, Proc. of the 2nd
USENIX Symposium on Operating Systems Design
and Implementation, Seattle, Washington, Oct.
1996, 229-243.

9. R. Pike, D. Presotto, S. Dorward, B. Flandrena, K.
Thompson, H. Trickey and P. Winterbottom, Plan 9
From Bell Labs, Usenix Computing Systems, 1995.

10. S. Sclavos, Authentication Practices & Market
Adoption of Digital Certificates, RSA Data Security
Conference, Jan. 1997. (keynote speech).

11. M. I. Seltzer, Y. Endo, C. Small and K. A. Smith,
Dealing With Disaster: Surviving Misbehaved
Kernel Extensions, Proc. of the 2nd USENIX
Symposium on Operating Systems Design and
Implementation, Seattle, Washington, Oct. 1996,
213-227.

12. M. Steen, P. Homburg, L. van Doorn, A. S.
Tanenbaum and W. Jonge, Towards Object-based



- 5 -

Wide Area Distributed Systems, Proc. of the
International Workshop on Object Orientation in
Operating Systems, Lund, Sweden, Aug. 1995.

13. L. van Doorn and A. S. Tanenbaum, Using Active
Messages to Support Shared Objects, Proc. of the
6th SIGOPS European Workshop, ACM SIGOPS,
Wadern, Germany, Sep. 1994, 112-116.

14. L. van Doorn, P. Homburg and A. S. Tanenbaum,
Paramecium: An extensible object-based kernel,
Proceedings of the 5th Hot Topics in Operating
Systems (HotOS) Workshop,, Orcas Island, WA,
May 1995, 86-89.

15. T. von Eicken, D. E. Culler, S. C. Goldstein and K.
E. Schauser, Active Messages: a Mechanism for
Integrated Communication and Computation, Proc.
of the 19th International Symp. on Computer
Architecture, Gold Coast, Australia, May 1992,
256-266.

16. D. A. Wallach, W. C. Hsieh, K. L. Johnson, M. F.
Kaashoek and W. E. Weihl, Optimistic Active
Messages: A Mechanism for Scheduling
Communication with Computation, Proc. of the 5th
ACM SIGPLAN Notices Symposium on Principles
and Practice of Parallel Programming, Santa
Barbara, CA, July 1995.


