
COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 45

omputing devices are routinely targeted by a wide variety of mal-
ware, such as spyware, trojans, rootkits, and viruses. The presence of
exploitable vulnerabilities in system software, and the widespread
availability of tools for constructing exploit code, has reduced the
amount of effort required for attackers to introduce malware into
computing devices. Increasing levels of network connectivity further
exacerbates the problem of malware propagation by enabling attacks
to be launched remotely. Current computing devices are routinely
used for security-sensitive applications; thus malware present on
these devices can potentially compromise the privacy and safety of

users. Furthermore, most computing devices today are part of a large
networked infrastructure. Hence, the compromise of any one comput-

ing device can lead to the compromise of the networked applications. For example, a rogue
wireless LAN access point can modify network traffic, thereby potentially affecting all com-
puting devices that use this access point. Therefore, to use computing devices with confi-
dence, users need assurance the software on their own computing devices and other
computing devices in their network executes untampered by malware.

EXTERNALLY VERIFIABLE
CODE EXECUTION

C
By ARVIND SESHADRI, MARK LUK, ADRIAN PERRIG,

LEENDERT VAN DOORN, and PRADEEP KHOSLA

d

d

Using hardware- and software-based techniques to realize a primitive
for externally verifiable code execution.

46 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

In this article, we describe a new primitive called
externally verifiable code execution. This primitive
allows an external entity (the verifier) to obtain assur-
ance that an arbitrary piece of code, called the target
executable, executes untampered by any malware that
may be present on an external computing device.
Assuming the target executable is self-contained
(does not invoke any
other code) and does not
contain any software vul-
nerabilities, externally
verifiable code execution
is equivalent to the fol-
lowing two guarantees:

• Correct invocation:
The verifier obtains
the guarantee that the
correct target exe-
cutable image is loaded
into memory and invoked for execution.

• Untampered execution: Other than performing
denial-of-service attacks, no malware
that may exist on the computing
device can interfere with the execu-
tion of the target executable in any
manner.

oftware-based and hardware-based tech-
niques for externally verifiable code exe-
cution have been proposed. Both classes

of techniques rely on a root of trust on the comput-
ing device. The root of trust is a trusted computing
base responsible for enforcing externally verifiable
code execution by performing three actions: measur-
ing integrity of the target executable; setting up
appropriate protections to isolate the target exe-
cutable from all other software; and invoking the tar-
get executable for execution. The root of trust also
sends the integrity measurement to the verifier over
an authenticated communication channel. The veri-
fier, which knows the correct value of the target exe-
cutable’s integrity measurement, uses the received
integrity measurement to verify if the correct target
executable was invoked for execution. In addition,
since the execution of the target executable is isolated
from all other software on the computing device, the
verifier obtains the guarantee of untampered execu-
tion of the target executable.

Software-based and hardware-based techniques for
externally verifiable code execution differ in how they
establish the root of trust. Pioneer is a software-based
technique in which the root of trust is established
dynamically [3]. In Pioneer, the computing device

executes a self-checksumming function called the ver-
ification function, which computes a checksum over
its own instruction sequence. The verification func-
tion also sets up an isolated execution environment,
wherein its execution is isolated from all other soft-
ware on the computing device. This is achieved by
first detecting if any other code had been executing

concurrently. Then, we set
up the execution environ-
ment to prevent other
code from running in the
future. The isolated execu-
tion environment guaran-
tees that no malware on
the computing device can
interfere with the execu-
tion of the verification
function. If the attacker
modifies the verification
function in any manner or
fakes the creation of the
isolated execution envi-
ronment, the checksum
computed by the verifica-

tion will be incorrect. If the attacker tries to forge the
correct checksum despite executing a modified verifi-
cation function or an incorrectly created isolated exe-
cution environment, the time taken to compute the
checksum will increase noticeably. Thus, the verifier
obtains an assurance that the verification function on
the computing device remains unmodified and the
isolated execution environment had been properly set
up if the checksum returned by the computing device
is correct, and the checksum is returned within the
expected amount of time.

When these two conditions hold, the verifier
obtains the guarantee that a dynamically created root
of trust exists on the computing device in the form of
the verification function.

In the two hardware-based approaches for exter-
nally verifiable code execution, the Pacifica technol-
ogy by AMD and the LaGrande technology (LT) by
Intel, a subset of the computing device’s hardware
makes up the root of trust [1, 2]. Assuming the hard-
ware remains uncompromised, the root of trust is
always present on the computing device. This is gen-
erally a valid assumption, since historically, attackers
prefer software-based attacks that are much easier to
launch than hardware-based attacks.

PIONEER

Here, we provide an overview of Pioneer, which is a
software-based primitive for externally verifiable
code execution. We examine the assumptions and

Khosla fig 1 (8/06)

Figure 1. Overview of Pioneer. The numbers represent
the temporal ordering of events.

Verifier

Verification func

Checksum code

Send function

1. Challenge
3. Checksum

5. Hash of code

6. Invoke4. Hash

7. Result (optional)

2. C
om

pute checksum

Expected memory layout

Hash function

Executable

Untrusted Platform

Verification func

Checksum code

Send function

Hash function

Executable

4. Hash 6. Invoke

Figure 1. Overview of Pioneer.
The numbers represent the
temporal ordering of events.

S

the attacker model, describe the verification func-
tion, and explore the Pioneer challenge-response
protocol.

Assumptions and Attacker Model. We assume the
verifier knows the exact hardware configuration of
the computing device, including the CPU model, the
CPU clock speed, and the memory latency. In addi-
tion, the computing device has a single CPU. A
trusted network is needed to eliminate the proxy
attack, where the computing device asks a faster com-
puting platform (proxy) to compute the checksum
on its behalf. Thus, we assume a communication
channel such that the verifier can detect any attempts
by the computing device to contact other computing
platforms.

We also assume the target executable is self-con-
tained, and does not
invoke any other software
during its execution. Also,
the target executable can
execute at the highest
CPU privilege level with-
out generating exceptions
and with all interrupts
disabled.

We consider an
attacker who has com-
plete control over the soft-
ware of the computing
device. In other words,
the attacker can tamper
with all software, includ-
ing the OS, and inject
arbitrarily malicious software into the computing
device. However, we assume the attacker does not
modify the hardware. For example, the attacker does
not load malicious firmware onto peripheral devices
such as network cards or disk controllers, or replace
the CPU with a faster one. In addition, the attacker
does not perform Direct Memory Access (DMA)
attacks such as scheduling a benign peripheral device
to overwrite the verification function or the target exe-
cutable with a DMA-write.

Pioneer Overview. The verification function
dynamically instantiates the root of trust on the com-
puting device. As Figure 1 shows, the verification
function consists of three parts: a checksum code, a
send function, and a hash function. The checksum
code computes the checksum over the instructions of
the verification function and also sets up an isolated
execution environment for the verification function.
After the checksum code finishes computing the
checksum, it invokes the send function to transfer the
checksum to the verifier over the communication

channel. After sending the checksum back to verifier,
the checksum code invokes the hash function, which
computes the integrity measurement of the target exe-
cutable by computing a hash over the executable
image. After returning the hash value to the verifier
via the send function, the hash function invokes the
target executable. Since the target executable is
directly invoked by the hash function, which executes
in the isolated execution environment set up by the
checksum code, the target executable inherits the
same isolated execution environment. Furthermore,
by assuming the target executable to be self-contained,
we arrive at the guarantee that no malware on the
computing device can affect the execution of the tar-
get executable.

The checksum code computes a “fingerprint” of
the verification function
such that the checksum
will be different even if one
byte of this region had
been modified. Tampering
with the checksum code to
forge the correct checksum
would induce a time delay
for the attacker. Therefore,
Pioneer requires a time-
optimal implementation of
the checksum code; other-
wise an attacker could

replace the Pioneer checksum code with a faster, mali-
cious implementation and still generate the correct
checksum. To aim for time-optimality, we designed
the Pioneer checksum code to be a short sequence of
simple arithmetic and logical assembly instructions.

The isolated execution environment enforces the
atomicity of execution of the verification function and
the target executable. That is, no other code on the
computing device is allowed to execute until the veri-
fication function and the target executable have fin-
ished executing. This atomicity is achieved by
ensuring that the verification function and the target
executable execute at the highest CPU privilege level
with all maskable interrupts disabled. Also, as part of
the checksum computation process, new handlers that
are part of the verification function image are installed
for all non-maskable interrupts and exceptions. Since
the target executable is self-contained, no code other
than the verification function or the target executable
can execute as long as either of these two entities is
executing.

Pioneer is based on a challenge-response protocol
between the verifier and the computing device. Figure
2 shows the Pioneer protocol. The verifier invokes the
verification function on the computing device by

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 47

Figure 2. The Pioneer protocol.
The numbering of events is the

same as in Figure 1. V is the
verifier, P is the verification

function, and E is the executable.

sending a random nonce as the challenge. The check-
sum code in the verification function computes the
checksum over the verification function’s instruction
sequence as a function of the random nonce. Using a
long random nonce prevents pre-computation and
replay attacks. The check-
sum code sends the com-
puted checksum back to
the verifier using the send
function. The verifier has
a copy of the verification
function and can hence
independently compute
the checksum. The veri-
fier confirms that the
checksum returned by the computing device is cor-

rect and the checksum is returned
within the expected amount of time. If
these two conditions are met, the veri-
fier obtains the guarantee that the root
of trust has been correctly instantiated
on the computing device.

fter sending the checksum back to the
verifier, the checksum code invokes the

hash function, which computes a hash of the target
executable image concatenated with the random
nonce sent by the verifier. The hash function then
sends the hash of the target executable back to the ver-
ifier. The verifier verifies the correctness of the hash
value using its own copy of the target executable
image. Finally, the hash function invokes the target
executable for execution. Note that if the checksum
returned by the computing device was successfully
verified, the verifier knows that the hash function
remains unmodified and executes in an isolated exe-
cution environment. Hence, by receiving the correct
hash value, the verifier obtains the guarantee that the
correct hash function must be executing, instead of a
malicious hash function that hashes the correct target
executable but invokes a malicious program.

The final outcome of the Pioneer protocol guaran-
tees to the verifier that the correct code had been
invoked inside an untampered execution environ-
ment. Many details had been omitted here, but can
be found in [3].

PACIFICA AND LT
Two hardware-based approaches for externally veri-
fiable code execution are examined here: AMD’s
Pacifica and Intel’s LT.

Assumptions and Attacker Model. Similar to Pio-
neer, we assume the target executable is self-

contained, and can execute at the highest CPU privi-
lege level without generating exceptions and with all
interrupts disabled. Also, we consider an attacker who
can arbitrary modify the software of the computing
device.

Overview of Pacifica
and LT. We now describe
how Pacifica and LT can
be used to obtain the
guarantee of externally
verifiable code execution.
We base our discussion
on Pacifica since the
technical details of LT are
presently unavailable to
the public.

Both LT and Pacifica
require a Trusted Plat-

form Module (TPM) to be present on the computing
device to provide the guarantee of externally verifiable
code execution. The TPM is a tamper-resistant cryp-
tographic coprocessor based on standards released by
the Trusted Computing Group (TCG) [4]. The TPM
computes integrity measurements of program images
using the SHA-1 cryptographic hash function. The
TPM stores these integrity measurements in pro-
tected registers called the Platform Configuration
Registers (PCR). When requested by an external ver-
ifier, the TPM returns one or more of the PCR values
digitally signed using the private half of its Attestation
Identity Key (AIK). The TCG standards for the TPM
describe in detail how the AIK key pair is securely
generated inside the TPM, and how a trusted third
party can verify the public half of the AIK belongs to
a particular TPM on a particular computing device.
The verifier has a certificate containing the public half
of the AIK, and uses this certificate to authenticate
incoming PCR values. This certificate can also be
used to detect if malware had modified the encrypted
private half of the AIK stored outside the TPM. The
verifier can then use the integrity measurements con-
tained in the PCR values to determine what software
had been loaded on the computing device. This
process by which an external verifier can determine
what software is present on a computing device is
called attestation.

To enable externally verifiable code execution
using a TPM, Pacifica adds a special instruction called
skinit (the corresponding LT instruction is called
senter) to the CPU’s instruction set. This instruc-
tion takes a pointer to the target executable as its
operand. When executing a skinit operation, the
CPU reinitializes itself without resetting any of the
peripherals or the memory. The CPU then transfers

48 September 2006/Vol. 49, No. 9 COMMUNICATIONS OF THE ACM

Khosla fig 3 (8/06)

Figure 3: Overview of Pacifica's externally-verifiable
code execution mechanism. V is the verifier, E the

target executable, and C is the CPU. T is the Trusted
Platform Module on the computing device. AIK-1 is the

private half of the Attestation Identity Key. PCRi is
a Platform Configuration Register.

1. C: execute skinit
2. C T: read E from memory, send over LPC bus
3. T: PCRi Hash (PCRi, E)
4. C: execute E
5. V T: ? nonce
6. T: {PCRi, nonce}AIK

-1

7. T V: ? PCRi,

Figure 3. Pacifica-based externally
verifiable code execution.

A

the entire target executable image (which must be less
than 64Kb in size) to the TPM using the dedicated
Low-Pin-Count (LPC) bus in a manner that cannot
be simulated by software. Thereby, an attacker cannot
fake the execution of skinit in software. The TPM
hashes the target executable image and stores the hash
in a PCR. After transferring the target executable
image to the TPM, the CPU sets up an isolated exe-
cution environment for the target executable by dis-
abling all interrupts and setting up memory
protections to disable DMA writes to the memory
locations containing the target executable. Finally, the
CPU jumps to the target executable and executes it.
An external verifier can read the PCR value contain-
ing the integrity measurement of the target executable
by making an attestation request to the TPM. Since
the verifier has a copy of the target executable image it
can verify the correctness of the integrity measure-
ment. As with Pioneer, the verifier is assured that any
malware on the computing device cannot tamper
with the execution of the target executable due to the
correctness of the integrity measurement and the fact
the target executable executes in an isolated execution
environment instantiated by the CPU. Figure 3 shows
the sequence of events in Pacifica-based externally ver-
ifiable code execution.

COMPARING PIONEER AND PACIFICA/LT
The primary advantage of Pioneer is that being
software-based, it can be used with legacy comput-
ing devices as well as computing devices that lack
the hardware support necessary for LT and Pacifica.
Also, Pioneer can be easily updated when vulnera-
bilities are discovered. Updating LT or Pacifica will
be difficult because they are hardware-based, as an
example will illustrate. The software running on
TPMs needs to be updated in light of the recent
compromise of the collision resistance property of
SHA-1 hash function [5]. However, TPMs are
designed so that their software is not field-upgrad-
able to prevent attackers from exploiting the update
facility. Therefore, the only way to perform the
hash function update is to physically replace the
TPM chip.

On the other hand, Pioneer has some drawbacks
compared to LT and Pacifica. Pioneer requires an
authenticated communication channel between the
verifier and the computing device. Therefore, Pioneer
cannot be used when the verifier and the computing
device communicate over an untrusted network like
the Internet. Also, Pioneer has some open research
issues. In particular, we need to prove the time-opti-
mality of the checksum code, prove the absence of
mathematical optimizations to the checksum code,

and derive a checksum code that can be easily ported
across different CPU architectures (the current ver-
sion of Pioneer is designed for the x86_64 architec-
ture). There are also low-level attacks that need to be
addressed: CPU overclocking, DMA-writes by
peripherals, memory writes by malicious CPUs in a
multi-CPU system, and variations in the running
time of the checksum code due to dynamic CPU
clock scaling.

CONCLUSION

We have described the primitive of externally verifi-
able code execution and given an overview of soft-
ware-based and hardware-based techniques to realize
this primitive. Externally verifiable code execution
can be used as a building block to construct security
applications that will empower users to use their
computing devices with confidence in the face of the
ever-increasing threat of malware. We hope this arti-
cle will motivate other practitioners in the field to
embrace this technology, extend it, and apply it to
build secure systems.

REFERENCES
1. AMD Corp. AMD64 Architecture Programmer’s Reference Manual (Dec.

2005).
2. Intel Corp. LaGrande Technology Architectural Overview. (Sept. 2003).
3. Seshadri, A. et al. Pioneer: Verifying integrity and guaranteeing execu-

tion of code on legacy platforms. In Proceedings of ACM Symposium on
Operating Systems Principles (SOSP), (Oct. 2005), 1–15.

4. Trusted Computing Group (TCG). TCG TPM Specification Version 1.2,
(Mar. 2006).

5. Wang, X., Yin, Y. and Yu, H. Finding collisions in the full SHA-1. In
Proceedings of Crypto, (Aug. 2005).

Arvind Seshadri (arvinds@cs.cmu.edu) is a Ph.D. candidate in
the Department of Electrical and Computer Engineering at Carnegie
Mellon University in Pittsburgh, PA.
Mark Luk (mluk@ece.cmu.edu) is a research scientist at CyLab at
Carnegie Mellon University in Pittsburgh, PA.
Adrian Perrig (perrig@cmu.edu) is an assistant professor of
Electrical and Computer Engineering, Engineering and Public Policy,
and Computer Science at Carnegie Mellon University in Pittsburgh,
PA.
Leendert van Doorn (leendert@us.ibm.com) is a senior
manager of the Secure Systems and Tools Department at IBM T.J.
Watson Research Center in Yorktown Heights, NY.
Pradeep Khosla (pkk@ece.cmu.edu) is the dean of Carnegie
Institute of Technology at Carnegie Mellon University in Pittsburgh,
PA.

Permission to make digital or hard copies of all or part of this work for personal or class-
room use is granted without fee provided that copies are not made or distributed for
profit or commercial advantage and that copies bear this notice and the full citation on
the first page. To copy otherwise, to republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee.

© 2006 ACM 0001-0782/06/0900 $5.00

COMMUNICATIONS OF THE ACM September 2006/Vol. 49, No. 9 49

