
Trusted Virtual Domains: Toward secure distributed services

John Linwood Griffin, Trent Jaeger, Ronald Perez, Reiner Sailer,
Leendert van Doorn, and Ramón Ćaceres

IBM Research
T. J. Watson Research Center, 19 Skyline Drive, Hawthorne, NY 10532 USA

{JLG, jaegert, ronpz, sailer, leendert, caceres}@us.ibm.com

Abstract

The focus of trusted computing efforts to date has been to
create islands of trust in a sea of distrust, identifying these
islands as dependable domains with a solid base that can be
used for building applications upon which critical services
depend. The aim of our work is to extend this solid base by
building “bridges” among trusted islands, with such goals
as enabling meaningful trade agreements between islands,
enabling migration of individual island inhabitants, and
enabling geography-independent affiliation among inhab-
itants of different islands.

1 Introduction: secure distributed services

Our vision of the future is that directed computation and
data analysis will be securely offloadable onto any accept-
able service computer, anywhere, that has excess processing
capacity. This vision goes beyond the scope of grid com-
puting as available today, in that we further believe that
such service offloading should achieve levels of security
and dependability that are equal or nearly equal to the lev-
els achieved on the user’s original, self-contained system.
For usability and scalability, we additionally require that no
extra user effort or interaction be necessary to ensure and
maintain these properties.

Such a vision is difficult to achieve presently, as it is
difficult to know or reason about the security and depend-
ability of a computer system not under a user’s direct, ad-
ministrative control. Any offloading tends to have severe
restrictions placed upon the location and manner in which
the computation will take place: one business may enter
into a lengthy and complicated legal negotiation to strictly
specify the physical and software security for machines co-
located in a service provider’s machine room, or an orga-
nization may require that all connections to its internal net-
work be made through a virtual private network (VPN) and
a firewall—hoping that the integrity of the VPN software
indicates the integrity of the users’ systems.

We envision a new environment for distributed, secure
computational offloading. Applications or services will be
partitioned into selectable components, where each compo-
nent may be serviced by remote entities acting in certain
roles. (Legacy applications could each run as a single un-
partitioned component.) Roles for remote entities will in-
clude statements of security and operational restrictions on
each entity’s behavior, and infrastructure around each re-
mote entity will ensure that its behavior doesn’t stray from
that of its specified role. The crux of this idea is that any
entity willing to take on a role—i.e., an entity trying to sell
its services or resources for profit—must demonstrate its ac-
ceptability to theinitiator of a service. The role-taking en-
tity, which we henceforth refer to as aresponder, must sat-
isfactorily establish that it can carry out the responsibilities
of the role while at the same time preserving any restrictions
that the initiator may place upon it.

In the context of secure distributed computing, we view
this evaluation of “acceptability” as that of remotely provid-
ing a believable description of the behavior and limitations
of the operating environment—what it and its applications
are restricted from doing, and what they are permitted to do.
Put another way, validating how an environment protects or
does not protect computation and the data it receives. This
can stem from a direct analysis of the hardware and software
components of a system, from a trusted third party certifi-
cation of the configuration of those components, or from a
combination thereof.

In this position paper we identify a new framework for
distributed service-oriented processing that we call Trusted
Virtual Domains (TVDs). The TVD framework opens the
door to realizations of the above ideas by tying together new
and previous work on trusted computing, policy specifica-
tion and verification, virtualization and middleware tech-
nologies, and others. TVDs are designed to simplify the
user’s and administrator’s interactions with large-scale dis-
tributed systems by offloading the “grunt work”—the anal-
ysis and enforcement of the security and operational prop-
erties associated with a workload or service—onto the TVD
infrastructure itself.



2 Motivational scenarios

In this section we present two example scenarios that
highlight the motivation for our position. As discussed in
the introduction, our scenarios revolve around two or more
parties who collaborate to create a distributed session: an
initiator who desires that a service be performed, and one
or more responders who perform the service by taking on a
role. For the purpose of these scenarios, think of each party
as being a process executing exclusively inside its own vir-
tual machine; we expand on this notion in the following
section.

Scenario 1: computational offloading. Our first sce-
nario involves initiator-specified computation: in particular,
grid-style computational offloading. In this scenario the ini-
tiator wishes to run an extensive but sensitive data mining
query over a confidential data set, requiring computational
and storage resources beyond those the initiator has avail-
able. For example, a pharmaceutical company wishes to
measure the death rate in patients that are prescribed an ex-
perimental drug mix: the query is sensitive, in that there
should be no external indication of the search parameters;
and the patient data must remain confidential. Computa-
tional offloading scenarios are ideally suited for grid com-
puting environments, where a goal is to create homoge-
neous, widely-available, distributed processing nodes to ab-
sorb excess local computational needs. However, although
grid servers are gaining in popularity and popular usage,
they currently offer few if any remotely verifiable guaran-
tees about the security and integrity of their operating en-
vironments, making them unsuitable for application in this
scenario.

One of our aims is to eliminate this barrier, enabling
such offloading scenarios to become commonplace for any-
one who could benefit from them, while simultaneously ad-
dressing any security concerns. At role-acquisition time,
the initiator might specify that it requires attestations to the
effect of processing-time reservations, memory and com-
munication isolation (with respect to other processes or en-
tities running on the responder’s system), encrypted on-disk
storage of any swapped memory or source data, and confir-
mation that the responder’s execution environment will be
reset and zeroed upon completion of the service. The re-
sponder’s virtual machine would then believably attest or
assert that it will enforce each of these requirements. In
an expanded scenario, the query may be provided by the
initiator, who specifies one set of security requirements re-
garding the query text, whereas the patient data may come
from a third-party source with much stricter requirements
of verifying identity and ensuring confidentiality.

Scenario 2: business services.Our second scenario
involves responder-specified computations (i.e., advertised
services): in particular, online business services. In this sce-

nario the initiator identifies a responder who advertises that
it is programmed and willing to accomplish the initiator’s
high level task. For example, a consumer wishes to order a
book from an online broker, but desires to prevent the dis-
tributor of the book from learning any information about the
consumer other than his or her address—in particular, pre-
venting the exposure of bank or financial information that
the consumer discloses in order to pay the broker. Online
business services are in widespread use today, but suffer in
that their usage is ad-hoc, with consumers relying only on
past experience or reputation when verifying the expected
behavior of different brokers, and in that users encounter
different interfaces for each different broker for a given re-
quested service. In this scenario, the consumer may desire
to securely audit the broker’s communications—in essence,
obtaining a guarantee that the consumer will have knowl-
edge of any unauthorized exposure—in lieu of specifying
security parameters for each responder.

Another of our aims is to generalize the parameters un-
der which a responder will operate on the initiator’s behalf.
The types of attestations and statements exchanged are dif-
ferent in this scenario: early in the book-ordering transac-
tion the responder could specify well-understood labels for
the data it will require to perform the service: financial debit
data, shipping address data, etc. The initiator can respond
by requiring that the responder locate and incorporate two
additional responders: one to handle the conveyance of the
financial-labeled data to the bank, and the other to handle
the conveyance of the address data to the warehouse, specif-
ically directing that these two additional responders must
reside on physically separate hardware platforms.

What’s missing? Two problems prevent today’s tech-
nologies from realizing our vision. First is the inabil-
ity to represent trusted properties: there are no generally-
accepted, useful mechanisms for an initiator to negotiate
the security properties and requirements it expects from a
remote responder. Second is the inability to verify trusted
properties: there are no mechanisms for a responder to
demonstrate its acceptability upon request.

Solving these problems requires the confluence of three
layers. First, it requires establishing that all systems in-
volved in a negotiation are under self-control, uncorrupted
by an attacker: a basis fornegotiation. Second, it re-
quires establishing the operational requirements to which
each system must adhere: a basis forcontrol. Third, it re-
quires establishing roles for all parties involved in the ag-
gregation: a basis forservice execution. Although there has
been individual work in each of these areas, to our knowl-
edge no directed effort has successfully tied the areas to-
gether. The architecture we describe in the following sec-
tion aims to address the two problems by establishing each
of these bases.



3 TVDs: Building upon verifiable trust

We are developing an architecture to build upon the no-
tion of negotiated roles for responders, wherein the roles
are defined by the security-related attestations they can pro-
vide to an initiator. In particular, our architecture focuses on
enabling and supporting execution environments to realize
secure distributed services.

A TVD is an abstract union entered into by an initia-
tor and one or more responders, in which the mutual re-
quirements for all parties are specified and confirmed dur-
ing the process of joining the union. The nature of the
TVD is that application-level programmers and users are
simply aware that their execution environment supports and
enforces semantic operational and security primitives, via
a well-defined and straightforward programming interface.
The humans are therefore relieved of the complexity of
correctly implementing and configuring their programs to
achieve the desired secure operational properties. Instead,
the mechanisms comprising the execution environment—
in our current thinking, Trusted Platform Module (TPM)-
based hardware support and one or more virtual machine
monitors—transparently handle the connections among and
execution monitoring of each of the parties.

3.1 TVD components

More specifically, there are three levels of components
in our architecture, corresponding with the three layers pre-
sented in the preceding section. The relationships among
these components is illustrated inFigure 1.

A basis for negotiation: The mutually-trusted com-
puting base (MTCB). Before any attestations can be made
or roles accepted, each party must be assured of the iden-
tity and integrity of the remote party’s computer system. A
good candidate for achieving this involves making use of
secure hardware extensions, such as high-end secure copro-
cessors or commodity embedded security subsystems such
as the TPM that many companies (including Dell, Hewlett
Packard, IBM, and Toshiba) have announced will be in-
cluded in their COTS computer system offerings. From our
previous experiences with engineering trust inside a single
computer system, we believe it is feasible to bridge trust
across multiple systems using the TPMs passively as the
root of trust on each system.

A basis for control: Attesting virtual environments
(AVEs). Building on an established framework for nego-
tiations, AVEs work with the underling hardware (and po-
tentially with underlying software) to create execution envi-
ronments enforcing the types of attestations described in the
previous section. We envision AVEs as supporting a wide
variety of environments, ranging from virtualized hardware
(e.g., VMwareTM , Xen, or the IBM Research Hypervisor)
to simpler sandboxed environments such as the Java 2 Plat-

AVE


EE


EE


…


…


EE


EE
…


TCB


AVE


EE


EE


…


…


AVE


EE


EE
…


MTCB


TVD


Hardware Platform 2


AVE
AVE


EE


EE


…


…


AVE


EE


EE


…


…


EE


EE
…


AVE


EE


EE


…


…


AVE


EE


EE


…


…


AVE


EE


EE
…


Hardware Platform 1


AVE


TCB


Figure 1: TVD architecture.The acronym expansions and
a description of the functions of each component are defined
in Section 3.1.

form, Enterprise Edition (J2EETM). An AVE is confined to
a single hardware system, but there can be multiple AVEs
running simultaneously on a system.

A basis for service execution: Execution entities
(EEs). Building on an established framework for control,
EEs are the individual responders who take on roles on be-
half of the initiator. There can be one or many EEs per
AVE—i.e., entities under the execution limitations defined
by the AVE’s configuration and attestation—subject to the
restrictions stated by the initiator. We anticipate that there
will often be reverse attestations required by the responders:
for example, an initiator who desires to access sales figures
on IBM’s corporate intranet may need to make reverse attes-
tations to the responder (the latter being an internal entity,
offering real-time sales data) before the responder consents
to releasing the information.

3.2 TVD construction

A TVD is composed of an established MTCB with AVEs
and EEs that cooperate to perform a service on behalf on
an initiator. When an initiator desires a service to be per-
formed, it creates a TVD consisting of itself and, if present,
its AVE and secure hardware. It then determines the roles
that need to be satisfied and locates suitable role-taking re-
sponders for the roles. (This step is beyond the scope of this
discussion, other than to say the AVE may provide support
for querying a database or peer-to-peer group to identify po-
tential roles.) It then contacts the responder and invites it to
join the TVD. The two TCBs attempt to establish an MTCB;
if this fails, both parties are notified and the initiator locates
an alternate responder. Once the MTCB is established, the
initiator or its agent specifies the requirements to the respon-
ders’ AVEs, and the responders specify any requirements
they may have to the initiator’s AVE. The respective AVEs
generate attestations that satisfy the requirements (or fail, as
above); once these attestations are verified then the initiator
and responder proceed as normal.



TVD membership is still a nascent topic, and many inter-
esting questions remain about the nature and application of
TVDs. For example, our descriptions present components
as having asymmetric security goals: an initiator has one
set of requirements to map onto the responder, and the re-
sponder has a different set of requirements for the initiator.
An alternative view is that the TVD itself has a set of se-
curity properties, and all components of the TVD must be
configured to uphold those properties. Another open issue
involves the susceptibility of commodity trusted hardware
to physical attacks: although some secure coprocessors are
built with physical tamper-resistance features, many of the
commodity TPM hardware solutions have only low-cost
measures available and are therefore not impregnable to a
determined physical attack. This may mean that there are
“flavors” of MTCBs that could be established, where a party
can refuse to establish mutual trust with potentially suscep-
tible hardware—or, alternatively, the party could evaluate
and manage its per-task risk based on its knowledge of the
type of remote hardware in use.

A more difficult question involves how the set of com-
ponents that form a TVD can change over time. A TVD
could expand in several ways: the initiator can identify
additional roles and invite additional responders to take
on those roles, or one of the responders may require sev-
eral additional roles to be farmed out to fully complete its
role. Ultimately such expansions are capabilities that are
grantable by the initiator. Looking ahead, a useful appli-
cation of TVDs may involve Internet-scale, multi-domain
service processing, where a TVD of many components is
itself coalesced into a single large entity; this new entity is
perhaps capable of acting as a new initiator or responder in
taking on another role—with composed, higher-level opera-
tional characteristics—to accomplish a higher-level service.

4 Responder attestations

Reasoning about what secure distributed services are
necessary requires a common language to describe the prop-
erties enforced by the individual execution environments.
Such a language must strike the right balance between ab-
stract and concrete: abstract enough that the system admin-
istrators and service designers can easily understand and
make use of the attestations, yet concrete enough that the
statements are actually demonstrable and preferably com-
putable and enforceable by all parties. As an effort toward
achieving this language, we offer an initial list of useful and
potentially attestable properties in this section.

4.1 Data-related attestations

These attestations relate primarily to the reception, han-
dling, and transmission of code or data provided by the ini-
tiator or a third party.

Confinement (isolation, confidentiality). These prop-
erties refer to the secrecy of the code and data entrusted to
the execution environment, in terms of isolating the mem-
ory or other physical resources (especially I/O resources)
used by the execution environment. One desired result is
that the resources are not visible or accessible by other exe-
cution environments sharing the same platform. At a differ-
ent level, another result is that data identified by a particular
label is maintained and accessed separately from data iden-
tified by a mutually exclusive label.

Immutability. These properties refer to the enforced
read-only nature of code or data provided to the execution
environment by the initiator or another third party. This
could be accomplished for example by static or dynamic
code analysis of the responder, by external management of
the memory pages visible to the execution environment, or
by creating a read-only API across the interface between the
AVE and the execution environment.

Integrity. These properties refer to the nature of in-
tegrity labels for data: preventing the acquisition or gen-
eration of external low-integrity data by a high-integrity re-
sponder, as doing so would degrade the responder into a
low-integrity state.

Secure I/O primitives. These properties refer to the
availability or required use of any secure I/O primitives
available to the responder. The secure I/O can represent a
hardware-enabled property—for example, a secondary stor-
age device or network interface card that automatically en-
crypts data before placing it on the medium—or can rep-
resent the manual encryption of data by the execution envi-
ronment itself before its conveyance to the appropriate hard-
ware device.

4.2 Processing-related attestations

These attestations relate primarily to the computations
performed by the responder on behalf of the initiator.

Availability. These properties, normally found in
service-level agreements, refer to quality-of-service-type
guarantees regarding the resources reserved for the respon-
der’s computations. This can include the rate or sum of the
allocations of the processor, network, storage, or other real
or virtualized devices present in the system. Statements can
be made about peak, average, minimum, or maximum usage
of the aggregate resources.

Cost and metering. These properties refer to non-
repudiable agreements by both parties as to the methods by
which the resource usage will be metered, as well as the rate
at which the initiator will be charged for resource usage by
the responder. This may also specify minimum and maxi-
mum charges for performing the service. These properties
could also be used to agree upon arbitration scenarios for
disputes.



Auditing. These properties refer to the capabilities of
the execution environment that allow the initiator to inter-
pose on resources utilized by the responder. As examples,
having the initiator mediate which point-to-point network
connections may be joined by the responder at connection-
time, or having all network traffic from the initiator pass
through additional responders (each assuming a role on be-
half of the initiator) to monitor the quantity and frequency
of network resources allotted to the initial responder.

Reset. These properties refer to an initiator’s require-
ments that the execution environment of the responder be
freshly reset (memory scrubbed, all resources reset) at ei-
ther the beginning or end of its execution. For example,
this could be a statement by the execution environment that
it will permanently halt the responder when the service is
complete, and that it will further securely delete any files
written by the responder during its operation.

4.3 Environment-related attestations

These attestations relate primarily to the configuration of
the execution environment in which the responder operates.

Redundancy. These properties refer to the physical
setup of the initiator’s hardware platforms, and any veri-
fiable failure resilience or fault tolerance mechanisms that
are in place over the hardware or individual hardware com-
ponents. For example, the measured presence of redundant
power supplies or other hardened hardware components, or
the installation of hardware- or software-based data distri-
bution schemes for storage or network components.

Identity. These properties refer to the author or source
chain of the software executing inside the responder’s exe-
cution environment, and may (or may not) uniquely iden-
tify a particular instance of the software. These properties
may also include identifiers describing execution environ-
ment itself (e.g., the hardware’s hard-wired identifiers, cer-
tificates from the author of the virtual machine monitor, a
reproduction of the monitor’s configuration file), although
such identifiers are more likely to be required to establish
an initial trust basis than to establish whether a responder is
properly configured to assume a role.

Administration. These properties refer to the physical
characteristics of the environment in which the system hard-
ware resides: the identity and contact information of the
system administrators; the physical geography in which the
server is located; legal, privacy, or ethical considerations
identified by the administrators as to the physical operation
of the respective computer systems; capabilities or willing-
ness to enter into long-term support contracts for providing
computational services.

Accountability. These properties refer to the legal ram-
ifications to the responder’s administrators for failing to
maintain support of the hardware or software configuration
necessary to complete the agreed-upon task: for example,

overloading the number of simultaneous services being pro-
vided and therefore dropping below the agreed-upon qual-
ity of service for one or more resources, or taking redundant
backup systems offline during critical operations.

5 Discussion

We are exploring the development of virtual operating
environments that use trusted computing components to
verifiably self-attest to property statements that describe
their own behavior, as well as statements that describe the
constrained behavior of applications that execute (or are in-
terpreted) inside the environments. Previous work in this
space focuses on the simpler problem of conveying third-
party attestations and assertions about a system—for exam-
ple, attesting that a certain hardware and software configu-
ration has been integrally loaded, and asserting that any sys-
tem with the loaded configuration meets certain high-level
security goals.

Achieving trustable self-attestations is a difficult propo-
sition, and we may not be able to achieve complete success.
As this is a speculative position paper, we have neither en-
couraging nor discouraging results to report. One of our
goals with this paper is to engage the community in a dis-
cussion of which properties are potentially self-attestable,
and how such verifiable self-attestation can portably be
achieved—whether using our trusted computing architec-
ture or using other frameworks.

We expect the list of operational properties (Section 4)
to be a useful starting point for continuing discussions on
the specific impact of trusted computing in distributed, het-
erogeneous environments, regardless of the particular attes-
tation or assertion mechanisms—self or third-party—used
to convey the individual properties among cooperating sys-
tems. Although property-based attestation is not itself a
novel concept, we are not aware of previous work toward
identifying specific composable security-related properties
in a trusted computing environment.

More generally, we believe that the TVD abstraction is a
useful concept toward the composition of secure distributed
services. Current work suggests that each of the three com-
ponent layers of TVDs are realizable. In addition, TVD de-
ployments should solve problems involving computational
offloading and business services as described in our exam-
ple scenarios inSection 2.

Thought experiments involving these scenarios support
our belief in the usefulness of TVDs. Scenario 1 decom-
poses into a straightforward mapping to both attestations
and roles as defined for TVDs. For attestations, the scenario
relies on a subset of the attestations inSection 4passing be-
tween a pair of AVEs that have established an MTCB. For
roles, the scenario could make use of any of the grid com-
puting environments available today.



Scenario 2 represents a more challenging thought experi-
ment, given that the roles defined by the responder (the book
broker) must be automatically partitionable into individual
EEs whose AVEs collectively uphold the data labeling and
isolation policies required by the initiator. This flexibility
requirement for Scenario 2 suggests that a significant loom-
ing challenge for enabling secure distributed services may
lie in the creation of common, well-structured, role-oriented
services by service providers or by third parties writing on
behalf of potential initiators. We postulate that this task will
be simplified in the context of TVDs, due to the availability
of the common security language of attestations that pro-
vide an exact mapping of potential customers’ security re-
quirements for a particular service.

6 Related work

The enabling technologies for secure distributed services
are hot research topics these days. Work by Sadeghi and
Stüble [7] aims to enable evaluating which security proper-
ties a remote system upholds, while obscuring the details of
which hardware and software components are used in the
system. The focus of that work is on the protocol-based
conveyance of properties, which complements our intended
evaluation of the properties themselves.

Sailer and colleagues [8] demonstrate the use of trusted
computing hardware to verify the integrity of the software
stack loaded on a system. Garfinkel and colleagues [1] use
trusted third-party certificates to establish a remote basis for
believing the authenticity of a virtual operating environment
and to demonstrate that both the environment and the ap-
plication running therein are unmodified. Haldar and col-
leagues [3] build upon these concepts by including a trusted
Java bytecode analyzer in the virtual operating environment,
to monitor the application’s adherence to a security policy
during execution. They expand upon an attestation tax-
onomy that is related to ours, but is more limited to the
environment of language-based virtual machines. Trusted
third party certifications and code analyses may end up be-
ing important aspects of deployed TVDs, both in terms of
the EEs and the applications running therein; especially as
other groups within IBM are exploring middleware-based
internal frameworks for EEs.

Aspects of the decentralized enforcement of a compre-
hensive, centralized secure operational policy are discussed
by Gasser and colleagues [2] and more recently by Ioannidis
and colleagues [4]. We extend these concepts in the context
of trusted computing, and propose merging the operational
specification of roles for services with their associated se-
curity properties.

Secure distributed services, remote attestation, and the
use of trusted computing hardware are also topics that are
actively being advanced by various corporations and indus-
try groups, such as with Microsoft’s Next-Generation Se-

cure Computing Base and the Trusted Computing Group.
Aspects of existing commercial middleware, such as the
MicrosoftR© .NET Web services framework and Common
Language Runtime, are very similar to TVDs—and would
be even more so if they were coupled with trusted comput-
ing technologies.

7 Conclusion

We envision an environment where computing services
can be dependably offloaded into execution environments
that demonstrably and satisfactorily meet a desired set of
security requirements. Toward this end, we present a new
abstraction whose purpose is enabling computer systems to
autonomously reason about the security properties provided
(or not provided) by other systems in a widely distributed
environment. This new abstraction, that we call Trusted
Virtual Domains, is intended to serve as a foundation for
dynamically constructing secure distributed services.

Acknowledgements

This work represents one portion of a larger effort among
our colleagues toward developing the concept of Trusted
Virtual Domains and exploring the impact of TVDs on
software and service deployment; complementary work
is proceeding at IBM’s Tokyo Research Laboratory [5]
and Zurich Research Laboratory [6]. This paper benefits
greatly from comments and context provided by Günter
Karjoth, Hiroshi Maruyama, Matthias Schunter, Sachiko
Yoshihama, and the four anonymous reviewers.

References

[1] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra: A vir-
tual machine-based platform for trusted computing. InSymposium on Operating
System Principles, pages 193–206. ACM Press, Oct. 2003.

[2] M. Gasser, A. Goldstein, C. Kaufman, and B. Lampson. The Digital distributed
system security architecture. InNational Computer Security Conference, pages
305–319. NIST/NCSC, Oct. 1989.

[3] V. Haldar and M. Franz. Symmetric behavior-based trust: A new paradigm for
Internet computing. InNew Security Paradigms Workshop, Sept. 2004.

[4] S. Ioannidis, S. M. Bellovin, J. Ioannidis, A. D. Keromytis, and J. M. Smith.
Design and implementation of Virtual Private Services. InIEEE International
Workshops on Enabling Technologies: Infrastructure for Collaborative Enter-
prises, pages 269–274. IEEE Computer Society, June 2004.

[5] H. Maruyama, F. Seliger, N. Nagaratnam, T. Ebringer, S. Yoshihama, S. Mune-
toh, and T. Nakamura. Trusted platform on demand. Research Report RT0564,
IBM Corporation, Feb. 2004.

[6] J. Poritz, M. Schunter, E. V. Herreweghen, and M. Waidner. Property
attestation—scalable and privacy-friendly security assessment of peer comput-
ers. Research Report RZ3548, IBM Corporation, May 2004.

[7] A.-R. Sadeghi and C. Stüble. Property-based attestation for computing plat-
forms: Caring about properties, not mechanisms. InNew Security Paradigms
Workshop, Sept. 2004.

[8] R. Sailer, X. Zhang, T. Jaeger, and L. van Doorn. Design and implementation of
a TCG-based integrity measurement architecture. InUSENIX Security Sympo-
sium, pages 223–238. USENIX, Aug. 2004.


	1 Introduction: secure distributed services
	2 Motivational scenarios
	3 TVDs: Building upon verifiable trust
	3.1 TVD components
	3.2 TVD construction

	4 Responder attestations
	4.1 Data-related attestations
	4.2 Processing-related attestations
	4.3 Environment-related attestations

	5 Discussion
	6 Related work
	7 Conclusion

