
Computer Break-ins: A Case Study*

Leendert van Doorn

Vrije Universiteit
Amsterdam, The Netherlands

ABSTRACT

Computer break-ins are getting more common every day. Log files and even
program binaries are changed, making it very hard for the system administrators to
assess the damage and track down the intruders. This paper describes the modus
operandi of hackers based on multiple hacking attempts that occurred during this
year at some department computers. Special attention is paid to the methods they
use to break into computer systems and what they do once they are in.

1. Introduction

Computer break-ins are much more common
now days than they were, say, ten years ago.
This is mainly caused by the technological
change that took place during this last decade:
Computers are interconnected using networks
[7] and most systems even rely on this. For
example, a network operating system like
SunOS†, which is based on the client/server
abstraction [1] (where client and servers reside
on different machines) relies heavily on its
interconnection. Unfortunately, network
operating system designers have the tendency
to model the network as an extension of the
internal data bus. They neglect the fact that a
computer network can very easily be eaves-
dropped -a simple program suffices- while a
data bus requires considerably more effort.
Eavesdropping is only a tip of the iceberg
when it comes to masquerading.

Modern hackers‡ are very aware of this
mis-modeling and are using it for their benefit.
A decade ago, when computers where still
�������������������������������

*This is a very preliminary version of a more exten-
sive paper describing our experiences with hackers
and computer break-ins.
†SunOS is a trademark of Sun Microsystems Inc.
‡There has always been some controversy over the
term hackers, versus crackers. However, crackers
call themselves hackers, and, in a much less positive
sense, we do too.

unconnected, the only way to get into it unau-
thorized was either by guessing a
name/password pair or by obtaining it from a
sloppy user. Now days, a hacker can write a
simple program that masquerades as a Network
File System (NFS) client and, bypassing all the
normal access control mechanisms, access user
files directly. NFS is not alone in being
vulnerable to these kind of attacks, almost all
of the network services are.

This paper surveys some of the tech-
niques used by hackers to break into computer
systems. It analyses various kinds of attacks,
including the traditional password guessing
attack, and the network service attacks as the
one in the example above. The information
presented in this paper was gathered from
traces of computer break-ins that occurred at
various Vrije Universiteit department computer
centers.

The organizational structure of the Vrije
Universiteit is such that each department has
its own autonomous computer center, provid-
ing the specific services for that field of sci-
ence. All the centers are connected to a
campus wide network which in turn is con-
nected to the Internet. At the time these
break-ins took place, there was no umbrella
organization that took care of security; each
department had to deal with this on its own.
But, since most centers are understaffed, secu-
rity was not one of their main concerns. ‘‘A

- 2 -

computer is something you take from the box,
plug in, and use; possibly browsing through the
manual when something goes wrong.’’ Unfor-
tunately, and unknown to the administrators,
the default setup is often a bit more user
friendly than one would generally like. It is
exactly this atmosphere that made it possible
for the hackers to break in.

An often heard tale is that computer secu-
rity at companies is much tighter than com-
puter security at universities. In principle, this
is true due to the nature of the organizations,
but from the traces we made, it appears that
many companies are vulnerable to exactly the
same kind of attacks as universities. The traces
showed that research and development
machines of several large companies were bro-
ken into by the hackers. Fortunately for these
companies the hackers were only interested in
penetrating the machine rather than stealing
trade secrets.

The remainder of this paper is organized
as follows: Section 2 describes a profile of the
intruder(s): who they are, and what kind of
background they have. The bulk of this paper
appears in Section 3, their modus operandi , in
which their attacks, cover-ups, and their
behavior on the system are described. Section
4 describes a little bit about detection and what
kind of things you should look for, and Section
5 gives a non-exhaustive list of defenses for the
attacks described in this paper. Finally, Sec-
tion 6 contains some reflections.

2. Intruder profile

An often neglected subject in computer
security literature is a description of the aver-
age hacker. Probably because no one really
knows who they are, and only their traces are
known. However, the hackers of the cases on
which this paper is based are known. All of
them were male, and computer science stu-
dents doing their master’s. They all had access
to the Internet, and were reasonable well
acquainted with UNIX.† All of the hackers,
except one, had the level of an ordinary UNIX
programmers with a little bit more understand-
ing of the network software. Only one hacker
seemed to have considerable more knowledge,
he was able to exploit the more esoteric
�������������������������������

† UNIX is a Registered Trademark of AT&T Bell
Laboratories.

operating system bugs (the illustrious div/mul
instructions on the sparc). Although it is ques-
tionable whether he discovered this himself.

One can only guess about the hackers
motives, why do they break in and what do
they gain by it? From the traces we made it
became clear that hackers we observed were
only interested in collecting as many
user/password entries as possible. Once they
broke into a computer they used it as a spring
board to get into other computers. They were
not interested in trade secrets, even though
some broke into large software companies and
were clearly in a position to get access to them.
Sometimes they used the computers to crack
password files which were obtained from other
systems.

3. Modus operandi

Usually a hacker follows a more or less
standard pattern to break into computer sys-
tems. First he tries to determine a set of poten-
tial machines, then tries to get in, and once he
has succeeded, he tries to consolidate his posi-
tion. Finding potential machines is often the
easiest part of the process. Either they are
machines mentioned in .rhosts and .netrc files
found on systems that are already broken into,
or a list is obtained using the domain name sys-
tem.

The domain name system (DNS) is a
hierarchical naming service that maps machine
names to their machine Internet addresses, and
provides additional host information. A popu-
lar DNS feature among hackers is the so called
‘‘zone transfer’’ request. When a DNS server
receives such a request it will return all the
information about the specified domain that
DNS knows about. This includes machine
names, Internet addresses, host information
like the type of the machine, and often the
owner and room in which the machine is
located.

Using this information a hacker can con-
struct a very specific list of machines that he
thinks have the potential to be broken into. For
example, from the zone list information he
could select all the UNIX machines running
BSD network software and attack only those.

- 3 -

3.1. Attacking a system

Once a hacker has determined a set of
potential machines, he sees himself faced with
the problem of getting in. Most multi-user sys-
tems provide some kind of authentication
mechanism that requires a user to identify him-
self before he can make use of it. Under UNIX
the authentication consists of the traditional
user name and password pair. User names are
usually publicly known; passwords are sup-
posed to be secret. Even when the user names
are not publicly known, they can be easily
obtained using the various information services
(i.e. finger, and ruser).

It is interesting to note that the most obvi-
ous kind of attack, i.e. trying different
user/password pairs at the login prompt, sel-
dom leads to a successful break-in. There are
too many combinations, and the login program
is usually slow, and disconnects the line after
three unsuccessful attempts. However, from
the sporadic messages on our consoles we see
that attempts to log into the system as net or
system do occur.

For a more successful break-in attempt
the hackers turned to the network services that
are provided by most systems. Interesting ser-
vices are: NIS, RLOGIN/RSH, NFS, and FTP.
Each of these services is described in turn, giv-
ing a general idea of the security problems as
we observed them from the traces. It should be
noted that the security problems described
below are already public knowledge and fixes
for them do exist (see § 5).

Network information service

The network information service (NIS),
also known by its former name yellow pages ,
is essentially a simple distributed database ser-
vice with multiple clients and replicated
servers (for availability and load sharing). The
service is used to store various site wide data-
bases, like the password file, group file, and
many others. Since many of these files contain
sensitive information (as opposed to secret
information), access is limited to those clients
that know the NIS domain name. This scheme
allows only machines that know the NIS
domain name to retrieve database entries.

Unfortunately the NIS domain name is
often the same as the DNS domain name for a
site (the result of the default installation pro-
cedure), or some simple derivation from it.

One of the programs that was used by the hack-
ers was a simple NIS client that tried various
permutations of the DNS domain name. This
program was primarily used to get a copy of
the password file, and once they got that, a
password crack program (Alec Muffett’s
crack) was used to break the entries in the file.
This is a nice example of where the technologi-
cal advances weakened the assumptions under-
lying the UNIX security mechanism. In line
with the UNIX philosophy, passwords are
stored in an encrypted form in a public read-
able file. This file was readable since the
designers did not think that a brute force attack
was feasible [5]. However studies [4] showed
that given an English, French, and Dutch dic-
tionary, a list of male and female names, and a
lot of clever permutations of them, 25% of the
passwords can be broken. This result is con-
sistent with our traces: whenever a hacker got
hold of a password file he was always able to
break at least some entries, hereby getting
access to the system.

To solve this problem, the concept of sha-
dow passwords was introduced. A shadow
password system consists of two databases: the
actual password file which is only available for
privileged users, and a shadow password file
without the encrypted passwords which is
available for everyone. This mechanism
makes it harder for a hacker to retrieve the
encrypted passwords, but does not eliminate
the problem. A shadow password file can still
be read by anyone as long as they make the
request from a privileged port. On a UNIX sys-
tem only a privileged user can make such con-
nections, but on a non UNIX system this res-
triction does not exist. For example, any PC
with a TCP/IP package can make network con-
nections from a privileged port. And hereby
retrieve the shadow password file.

The traces showed that at least one
hacker was capable of entering about 250 sites
using the method described above. This was
mostly done by hand (sometimes with the help
of a shell script), and thus very laborious. But
since we are in field of automating laborious
tasks, just imagine the impact of a program that
would automatically traverse the DNS direc-
tory graph and would retrieve the password file
from every machine it came across.

- 4 -

Remote login/shell service

The remote login service provides a
remote terminal service, i.e. users can login
over the network as if they were attached to a
direct terminal. Ordinarily users only have to
provide a password to login using this service,
since the user’s name is given to the remote
server as part of the initial handshake. To save
the user from having to type his password
every time he logs in from one system to
another, the login service provides an
automatic authentication facility that gives
immediate access to trusted users , or users
who are logging in from trusted hosts .

A related service is the remote shell ser-
vice which provides a remote command execu-
tion facility. Anyone coming from a trusted
host or is a trusted user can execute remote
commands. This service uses the same authen-
tication mechanism as the login service; for
this reason the two services are discussed here
as one.

A trusted host is one whose name appears
in a special database (/etc/hosts.equiv) . This
database contains the names of all the hosts for
which the users do not need to supply a pass-
word when they want to login (using the
remote login service) or execute a command
(using the remote execution service), provided
that the user name exists on the local machine.
An important feature of this database is that it
can contain wildcards. For example a ‘‘+’’
(plus) means than any host is allowed access.
It is especially this wildcard feature that is
responsible for a lot of security problems.
Most computer systems that are shipped today
(most notably Sun systems) distribute their sys-
tem with a single plus in the trusted host data-
base, meaning that any host is trusted. It is
surprising to see that many system administra-
tors aren’t aware of this feature and do not dis-
able it.

From our traces we observed that most of
the attacked systems still had a plus in their
trusted hosts database. The only problem
which the hacker had to solve was to find a
user name that existed on his and the remote
system. But given the generous variety of stan-
dard UNIX login names this wasn’t a difficult
exercise.

Apart for the system-wide database, each
user can have his own private database, named
.rhosts , which is located in his home directory.

A user’s .rhost file can also contain a list of
trusted users on a per machine basis. For
example, the following .rhosts file allows user
Joe at flytour.cs.vu.nl or splash.cs.vu.nl to log
into the system without the need of a password.

flytour.cs.vu.nl joe

splash.cs.vu.nl joe

splash.cs.vu.nl marcy

Also user Marcy at the machine splash.cs.vu.nl
can login without typing her password. The
wildcards in the trusted host database can also
be applied to the host names and trusted user
names in the .rhost file. For example, a .rhosts
file containing the line ‘‘+ +’’ allows any user
from any system to login without providing a
password.

When used wisely these trust mechan-
isms are very valuable. Users don’t have to
type their password every time they log into a
trusted machine and remote commands can be
executed without logging in first. Unfor-
tunately, letting the user decide who to trust
and who not to trust is in general a very bad
idea. Suppose that the owner of the example
.rhosts file trusts Joe and Marcy, and in turn
Marcy trusts Karen, and Karen trusts Mark.
Using this trust relation Mark can become
Karen, and then Marcy and finally login using
the account of the owner of the .rhost file.
When Mark’s account is broken into, then
Karen’s and Marcy’s accounts are also broken.

From our traces it appeared that only a
few hackers actually tried to follow this trust
relation chain (others probably thought it was
too much work). Most of them misused this
trust system by planting a .rhosts that allowed
full access from anywhere into a home direc-
tory, using NFS, or FTP.

Network file system

Sun’s network file system (NFS) [6] is a
system that allows system administrators to
mount file systems that reside on remote com-
puters in exactly the same manner as they
would mount a local disk. NFS uses the client
server abstraction, i.e. some machines function
as servers (those which have disks with file
systems) and others function as clients (disk-
less clients, but possibly also the servers them-
selves). The benefits of NFS are widely advo-
cated: files don’t have to be replicated over all
the machines which saves disk space. users are

- 5 -

not tied to one particular machine since their
directory can be accessed from any machine,
and maintenance becomes easier since all files
are centralized.

NFS is probably the most important and
vulnerable network service in the system,
because it provides full access to files and
directories. It is therefore unfortunate that the
current NFS implementation has more than its
fair share of security problems. The primary
problem is that NFS’s access control mechan-
isms are very hard to maintain, and are hardly
adequate (except for sites which have installed
the latest NFS patches). Another problem is
NFS’s lack of user authentication, even when
using the so-called secure NFS implementa-
tion.

To implement the access control mechan-
ism, the NFS service is broken up into two
separate servers: the mount daemon†, and the
NFS daemon. Access control was deemed
inherently more operating system dependent
and therefore was provided by a separate
server, the mount daemon. Its primary func-
tion is to handle mount requests and determine
whether a client is allowed to access the file
system. When a client is allowed access, the
mount daemon returns a file handle for the root
directory of the file system. With this file han-
dle the client can make a request to the NFS
daemon. Every file or directory has its own
unique file handle, and given the file handle for
a directory, the client can obtain new handles
for files and sub-directories from the NFS dae-
mon. This daemon performs the normal file
system operations (e.g. read, write) on files
which are represented by their file handle. In a
sense, a file handle resembles a UNIX file sys-
tem i-node.

The problem with this type of access con-
trol is that once the hacker gets hold of a han-
dle, or is able to make one up, he has full
access to the file system. And this access can-
not be revoked. Getting hold of a file handle is
not that hard. Often the export lists (which file
systems may be exported to which system) are
badly maintained and allow any access. From
our traces it became clear that bad export lists
were one of most successful ways for a hacker
�������������������������������

†Daemon is a UNIX term for a process which has no
terminal attached to it. We use the term loosely as a
synonym for server process.

to get into a new system. The strategy he used
was the following: he would mount the /usr file
system, put a .rhosts file in the /usr/bin direc-
tory giving him access, and then login as the
user that owns all program binaries, named bin,
using the remote login service. Since /usr/bin
(actually /bin but this is a symbolic link to
/usr/bin) is the home directory for this user, and
contained a valid .rhosts file the remote login
would succeed. Being bin on a machine gave
him write access to all system binaries and
important data files and it was only a matter of
minutes before he got the permissions of the
privileged user.

The hacker could write the .rhost file in
the /usr/bin directory because he was able to
specify the user and the group ids of the file.
This works for all user and group ids, except
that of the privileged user, but even this is a
configurable parameter. This is a very impor-
tant flaw in the NFS system. Every user can
write his own NFS client (no special privileges
are required), specify any identity and read or
write files. An NFS client that provides this
basic functionality can easily be written in
about 300 lines of C code.

Secure NFS tries to remedy this flaw but
succeeds only partially. Secure NFS’s basic
problem is that the underlying crypto-system is
broken, and programs exists that in one minute
generate all the secrets involved. However,
from our traces there was no evidence that the
hackers used such programs, probably because
it takes considerable cryptographic skill to
write them. Another interesting flaw is the
problem with file handles. They can be con-
structed without the help of the mount daemon.
With this the client can go directly to the NFS
daemon, and bypass the access control
mechanisms which are enforced by the mount
daemon. Fortunately, this bug has recently
been fixed (see § 5).

File transfer protocol service

The file transfer protocol (FTP) service
allows clients to copy files from one machine
to another. It resembles NFS in a way, but is
intended for long haul networks. Normally the
client has to provide a user name and password
to get access to the remote system, although a
public account like anonymous or ftp is often
available. Internet archive sites make use of
this feature to allow any Internet user access to

- 6 -

their archives without the need to create indivi-
dual entries for them.

The current FTP implementation has
been notorious for its security problems. The
FTP service used to be a very simple one, only
providing login, store, and retrieval functional-
ity. But over the years many features were
added making it a complex and difficult to
understand program. One of its problems was
that it could be tricked into giving the hacker
the permissions of, for example the user Joe,
while the hacker actually logged in using a
public account. Even though these particular
bugs have all been fixed, the FTP service stays
suspect and should be watched very carefully.

From our traces it became clear that it is
not the FTP program bugs which are exploited
by the hackers, but rather the negligence of the
administrators. One of the first attacks a
hacker would undertake was to FTP to a sys-
tem using the public access account, and deter-
mine whether the directory he got in was writ-
able. If so, he would put a .rhosts file into it
(which contained his name and his current
machine). Since the directory is often the
home directory of the user ftp (or ftpd), a sim-
ple remote login sufficed to get into the sys-
tem. It was surprising to see that systems that
provided public FTP access had a writable ftp
root directory, and thus were liable for these
trivial attacks.

Another security risk lies with the client
program of the FTP service. This program
saves the user from typing his user name and
password every time he connects to a remote
machine. It does this by looking up the
machine name in a file called .netrc in the
user’s home directory and use the login name
and password stated in that file instead. How-
ever, this password is stored in plain-text, and
the hacker only has to be able to read the file to
get yet another entry. Storing passwords in
plain-text is always a bad idea!

3.2. Covering up tracks

One of the first things a hacker will when
he breaks into a system is to cover up his
tracks. This is usually done by modifying or
even removing system log files. Another trick
that is commonly used is to bypass the logging
facilities of the remote login and remote shell
service is to use the remote execution service
(REXEC). This service allows a client to

execute commands given a valid user name
and password. In this respect it is very much
the same as the remote shell service, but
without the automatic authentication, and more
important, without making log entries†. It is
exactly this last feature that makes the service
so popular among hackers. A common method
to get into a system unnoticed is to use the
remote execution server to make a copy of the
log files, and then use the remote login service
to login. Then he would try to become root
and overwrite the log files with the saved
copies (which did not contain any evidence of
his login). Becoming root never seemed to be
the real problem.

3.3. Hackers behavior

Once a hacker successfully breaks into a
computer system and has removed the evi-
dence of his presence, he goes about consoli-
dating his position. This can be as simple as
placing a .rhosts file in the home directory of a
cracked account or as devious as replacing sys-
tem binaries by patched versions. For this last
action he needs to have root privileges (some-
times the owner of the binaries suffices).
Besides consolidation, hackers are also very
interested in mailboxes and user’s .netrc and
.rhosts files.

From our traces we’ve seen hackers place
.rhosts files that trust any user from any host in
home directories of unused accounts and even
in the root directory. The later allowed any
user from any host to login as root. Much
more devious actions were those where the
hacker replaced existing system binaries by
augmented ones. For example, a hacker
replaced the su and newgrp commands by spe-
cial versions that gave him a privileged shell
whenever he supplied a special password.
Other favorite targets were programs that asked
for a passwords (e.g. the FTP and TELNET
clients, but also their server programs). The
augmented programs continued to work, but
logged every password that were given to them
into a special file which was, of course, only
known to the hacker.

�������������������������������

†On some systems the log server (syslog) can be set
up in such a way that it logs successful REXEC
calls. None of the hackers seemed to be aware of
this.

- 7 -

#!/bin/sh

LOGFILE=logfile

while true; do

case ‘date | cut -d" " -f5 | cut -d: -f1‘ in

18|19|20|21|22|23|00|01|02|03|04|05|06|07)

(echo "======= "; date) >> $LOGFILE

(echo "who"; who) >> $LOGFILE

(echo "ps axl"; ps axl) >> $LOGFILE

(echo "netstat -n"; netstat -n) >> $LOGFILE

sleep 600

;;

*)

sleep 3600

;;

esac

done

Figure 1. Example shell script used for spotting a hacker.

A more clever attack was carried out by a
hacker who modified the tcpdump program
(see § 4) and saved every network packet con-
taining a name and password destined for the
FTP server on the same network. This way he
didn’t have to install a modified version of the
FTP server program, in fact he didn’t even
have to be on the machine where the server ran
as long as he was on the same network seg-
ment.

Once they became the privileged user
they were also very interested in user’s mail
boxes, .rhosts, and .netrc files. Mail boxes
were frequently scanned for words like hacker ,
security , and password , and read subsequently.
System administrators were identified either
from the mail system’s alias list or special
group identities. Their directories were care-
fully scanned for all kinds of interesting things,
including bug reports and fixes, lists of newly
created user accounts, and so on. We also
observed that hackers killed or reniced pro-
grams because they used too much CPU time
on their system.

4. Detection

Detecting a break-in is often difficult,
especially when hackers try to cover up their
tracks. In fact, all the hacking attempts on
which this paper is based were detected by
mere accident, either because an administrator
noticed something ‘‘strange’’ (e.g. a gap in a
log file, or an absent user starting to use his
account), or were warned by other administra-
tors (e.g. who had found foreign password

files).

Even though detection depends a lot on
just luck, a number of general points can be
made. You should always examine your log
files regularly, especially the files generated by
the system log service and the wtmp file.
Watch for connections made from unusual
hosts or at unusual times (Wietze Venema’s
TCP wrapper package [8] is very useful in this
respect). Also accounts that have been unused
for a while and start being used again are
suspect. A common rule is that hackers usu-
ally go about their business between the hours
of 18.00 and 8.00, and on Saturdays, Sundays,
and national holidays.

An easy way to check whether a hacker is
working during these hours is run a simple
shell script every 10 minutes that logs all the
processes and network connections to a file.
An example of such a shell script is given in
figure 1. In fact, it is a reminiscent of the shell
script we initially used to find out what the
hackers were doing (this was after they were
detected, and before the trace program was
installed). This script logs a number of things:
a list of current users (although hackers usually
remove themselves from that list), a list a all
current process, and a list of all current net-
work connections.

Of course, the use of such a shell script is
rather limited. It doesn’t take a smart hacker
very long to find out that he is being watched,
since the commands in the script show up in
the process list. A for the hacker unobservable

- 8 -

tracing method is to use a program that snoops
the network and prints the contents of the net-
work packets. Of course, this program should
run on a stand-alone computer that is con-
nected to the network, but in such a way that
the hacker doesn’t have access to it. Examples
of such programs are etherfind and tcpdump.
Especially tcpdump can quite easily be modi-
fied to display the contents of every network
packet.

5. Defenses

Defenses against computer break-ins is
the subject of many books that have been writ-
ten (the most useful one for UNIX system
administrators is no doubt [3]). Without
repeating all that is written in those books,
some general remarks, with respect to the prob-
lems described in this paper, can be made:

� When using NIS, be sure to install the
latest patches (see below).

� Remove any wildcards from the trusted
hosts database (/etc/hosts.equiv).

� Use .rhosts and .netrc file wisely, perhaps
disallow foreign hosts. Do not use wild-
cards, and do not store plain-text pass-
words in .netrc files.

� When using NFS, be sure to install the
latest patches (see below). You should
also be sure to specify to which hosts (or
groups of hosts) you export your file sys-
tems. When you export the user file sys-
tem (/usr) consider exporting it read-
only . Consider disallowing setuid and
root access for any NFS file system
(except the roots of diskless workstations,
of course).

� Also consider turning off the ‘‘-n’’ option
of the mount daemon (see /etc/rc.local).
The mount daemon manual says that your
system is slightly less secure, this is
wrong. Your system is wide open.

� When you offer FTP access be sure that
the FTP spool directory is read-only.

� Subscribe to the CERT advisory mailing
list (send mail to cert-advisory-
request@cert.sei.cmu.edu to join), and
apply these fixes regularly.

The latest NIS, NFS and many more
security software fixes for SUN computers can
be found in ftp.uu.net:/systems/sun/sun-fixes,
or from be obtained your own vendor.

A very useful tool to detect security
weaknesses (possibly caused by hackers) is the
freely available program called COPS [2]. A
copy of COPS can be found in
cert.sei.cmu.edu:/pub/tools/cops.

6. Reflections

All the break-ins described in this paper
could have been prevented when the adminis-
trators of the attacked systems were more
aware of computer security. However, this
would have meant that all of them should care-
fully study the UNIX security system, install all
the programs and frequent updates as soon as
they appear, browse through all the log files
frequently, and more important keep up with
all the news and rumors that appear on the
many security news groups. This is a full
man’s job. I therefore believe that you can not
blame the system administrators, they simply
didn’t have the extra time for all this given
their already hectic job.

On the other hand, if they would have
known the information contained in this paper
the risks of being attacked and the resulting
damage would have been much less. This is
exactly the reason why I wrote this paper, to
give an survey of the way hackers work and
what a system administrator can do to prevent
attacks. But by no means, I have the illusion
that a system will be impossible to penetrate
when all the problems described in this paper
are properly addressed.

It is also my belief that security is not so
much a technological problem as well as a
software engineering one. For most of the
technological problems adequate solutions do
exist, it is only matter of vendor interest
whether they apply them in their products.
Although vendors are becoming more aware of
security, it is still something you add-on as an
afterthought. This is wrong. Security should
be kept into account during the whole phase of
product design. This will also make security
much more user friendly. There is absolutely
no reason why security is as user hostile as it is
today. This is also the main cause of the
administrative problems. A lot of switches and
buttons must be pushed in order to get security
working, and often something is missed. If
security would be the default and nicely
integrated into the system none of these prob-
lems would occur. Getting a remote password

- 9 -

file using the NIS service would be impossible,
so would mounting a remote file system, and a
remote login as user bin would never succeed
since the trusted hosts database would not con-
tain a wildcard as an ‘‘acceptable’’ default.

7. Acknowledgments

I would like to thank Mark Wood for
reading the manuscript and especially the sys-
tem administrators of the attacked systems for
their dedication, since they were the ones who
did the actual tracing, examined the log files,
wrote the shell scripts, and took subsequent
actions. My input was merely to give advice
on how to set up a trace, use my trace pro-
grams, and interpret the results.

References

1. A. D. Birrell and B. J. Nelson,
Implementing remote procedure calls,
Trans. Computer Systems 2, 1 (Feb.
1984), 39-59.

2. D. Farmer and E. Spafford, The COPS
Security Checker System, USENIX
Conference Proceedings, Anaheim, CA,
1990.

3. S. Garfinkel and G. Spafford, Practical
Unix security, O’Reilly & Associates,
Inc., 1991.

4. D. V. Klein, Foiling the Cracker: A
Survey of, and Improvements to,
Password Security, EKUUG Summer 90,
London, July 1990, 147-154.

5. R. H. Morris and K. Thompson,
Password Security: A Case Study,
Comm. of the ACM 22, 11 (November
1979), 594-597.

6. H. Stern, Managing NFS and NIS,
O’Reilly & Associates, Inc., 1991.

7. A. S. Tanenbaum, Computer networks,
Prentice Hall, Englewood Cliffs, NJ,
second edition, 1988.

8. W. Venema, TCP WRAPPER, een tool
voor het bewaken van netwerkactiviteit ,
Technische Universiteit Eindhoven.

