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Abstract
We present an operating system independent hypervisor se-
curity architecture and its application to control information
flow between operating systems sharing a single hardware
platform. New computing paradigms -such as Grid comput-
ing, On-demand services, or Web Services- increasingly de-
pend on the security of the underlying computing infrastruc-
ture. A fundamental security problem today is that almost all
available security controls for protecting the computing in-
frastructure rely on the security expected from the operating
system. However, common off-the-shelf operating systems
are too large and complex to provide the security guarantees
required for critical applications. Hypervisors are becoming
a ubiquitous virtualization layer on client and server systems.
They are designed to isolate operating systems by running
them in isolated run-time environments on a single hardware
platform. Thus, a malicious or manipulated OS can be iso-
lated and security breaches can be contained within it. How-
ever, since distributed services need resource sharing, oper-
ating systems must be allowed to co-operate. Our contribu-
tion in this paper is the extension of a full-isolation hypervi-
sor with security mechanisms that enable controlled resource
sharing between virtual machines to secure this co-operation.
We have successfully implemented our hypervisor security
architecture (sHype) into a fully functional multi-platform re-
search hypervisor (vHype). sHype implements a security ref-
erence monitor interface in the hypervisor to enforce infor-
mation flow constraints between virtual machines.

1 Introduction

Information services such as Grid computing, On-Demand
services, Intranet, Web-Services, data bases, text processing
and program development are distributed and rely strongly on
the security of the underlying computing infrastructure. Re-
lated functional components such as run-time environments,
data bases, Web servers, authentication modules, authoring
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programs, or Web browsers have not only varying but often
conflicting security requirements. Consequently, the func-
tional components must be securely isolated against each
other to enforce different security requirements. At the same
time, components with similar security requirements must be
able to effectively and efficiently share information. Usually,
security mechanisms are setup to guard isolation and infor-
mation sharing properties between functional components.

Almost all security controls available in research and both
business and personal computing environments to securely
separate and control information flow between run-time envi-
ronments rely on the secure computation environment of their
operating system. This means that application sets with vary-
ing or conflicting security requirements (e.g., mutually sus-
picious applications) have to run on separate hardware plat-
forms or rely on the operating systems to isolate the sets and
enforce within the sets the different security requirements.

This reflects a fundamental security problem today: the
currently available operating system security controls do not
solve this isolation issue because they share many critical re-
sources such as shared libraries, file systems, network, and
display without strong separation. Additionally, prevalent
discretionary access controls (defined as allowing users to de-
termine access right to their data) cannot solve the generic
problem of malicious code (viruses etc.) since they cannot
separate what a user intends to run from what a user is un-
intentionally executing. Also, discretionary controls assume
that users are acting in an authorized way. Vulnerable appli-
cations or careless users may allow malicious code to enter
and compromise a system. Similar arguments hold for the
protection of data confidentiality.

In an effort to realize strong isolation guarantees and con-
trolled mediation between processes, SELinux [1] has intro-
duced mandatory access control into the Linux operating sys-
tem. However, the complexity of its security policy makes
it impossible to validate security guarantees against security
requirements. At the same time, the operating system is still
susceptible to attacks (e.g., unauthorized access, running ma-
licious code) by the most powerful user from within the sys-



tem. While SELinux represents a significant step towards in-
creasing security in operating systems, the SELinux isolation
model is not sufficient to co-locate and securely separate dis-
trusted programs (peer-to-peer applications) from critical ap-
plications (Internet banking or critical data base servers).

These problems cannot be solved by adding a higher-level
security infrastructure. Considering the most important pre-
dicted threats against system security [2] – e.g., malicious de-
velopers, trap doors during distribution, boot-sector-viruses,
and compiler trap-doors –, effective security cannot be im-
plemented in layers above the operating system (i.e., middle-
ware or applications) because related security controls could
be by-passed by those threats. Although integrity check-
ers, anti-virus scanners and similar security applications are
useful to mitigate the risk, they are utterly inappropriate to
achieve security guarantees since they may become compro-
mised by the malicious code they are intended to detect.

Hypervisors are becoming a ubiquitous virtualization layer
on client and server systems. They are protected against the
virtual machines (VMs) and any malicious code running in
them. The system that we describe in this paper addresses
the above concerns by using a low-complexity and high-
performance trusted hypervisor layer below the OS to im-
plement mandatory security controls for (1) isolating virtual
machines by default and (2) sharing resources among virtual
machines when desired. By design, hypervisors isolate vir-
tual resources (e.g., virtual LAN, disk, memory, or CPU) they
export to operating systems. However, they do not control the
sharing of virtual resources between OS.

Our contribution in this paper is the extension of the exist-
ing hypervisor resource-level isolation to include access con-
trol on virtual resources. Our extension enables administra-
tors to define classes of virtual machines and describe in a for-
mal and verifiable way the necessary requirements for sharing
virtual resources between those virtual machines. This formal
description of security policy is then interpreted and enforced
by access control mechanisms in the hypervisor. To control
the sharing of virtual resources based on security policies, we
integrated a reference monitor interface into an existing re-
search hypervisor (vHype) for the Intel x86 platform. We im-
plemented the core hypervisor security architecture and, as
a proof-of-concept, demonstrated access controls for the vir-
tual network (LAN). Our modifications to the hypervisor are
small, about 1000 lines of code. Extending access control to
the remaining virtual resources will require only a few lines
of code. The secure hypervisor architecture is designed to
achieve medium assurance (Common Criteria EAL4 [3]) for
hypervisor implementations. Our security-enhanced research
hypervisor achieves near-zero security-related overhead on
the performance-critical path.

Section 2 introduces the typical structure of a hypervisor
environment for which we have developed a generic security
architecture. Mutually suspicious applications and run-times
serve as an example to illustrate requirements and the use of

our hypervisor security architecture. Section 3 describes the
related work. We introduce the design of the sHype hypervi-
sor security architecture in Section 4 and its implementation
in Section 5. Section 6 illustrates the use of sHype to im-
plement a multi-level secure LAN. Section 7 evaluates our
results from a security perspective.

2 Problem Statement

The problem we are addressing is how to effectively and ef-
ficiently control information flow between VMs running on
the same hypervisor system. Hypervisors offer isolation ca-
pabilities at the virtual resource level. However, information
flow between VMs can occur through shared virtual resources
(e.g., virtual network) or by re-assigning exclusive virtual re-
sources (e.g., virtual disk) from one partition to another.

In this section, we describe what virtualization means and
how virtualization is generally implemented. Following this
introduction, we motivate how including mandatory access
control into hypervisors can generally help to improve the
management and run-time security of systems. We then iden-
tify the problems that need to be solved to enforce with a high
degree of confidence mandatory access control inside the hy-
pervisor system.

2.1 Hypervisor Background
The prevalent approach to create multiple virtual machines on
a single real hardware platform is the Virtual Machine Mon-
itor (VMM) approach [4]. A VMM is in complete control
of the real system resources. It provides isolated run-time
environments by virtualizing and sharing these hardware re-
sources. Such a virtualized environment is called a Virtual
Machine (VM). Programs running in a VM show at worst
only minor decreases in speed, this is, VMs are taken to be an
efficient, isolated duplicate of the real machine [5].

Similarly to VMMs, a hypervisor virtualizes the real sys-
tem hardware to allow resource sharing and offers VMs (here-
after also called logical partitions) to guest operating systems.
To keep its code base small, the hypervisor separates any
higher-level services into modular isolated components resid-
ing in specialized privileged partitions. Such isolated compo-
nents implement partition management and include hardware
device drivers as an essential part of any virtualization tech-
nology.

Figure 1 illustrates the architecture of our vHype research
hypervisor into which we have integrated our security archi-
tecture. The hypervisor directly controls the real system hard-
ware, such as memory and CPU and I/O interfaces. It creates
logical partitions (LPARs), which are virtual copies of the
system hardware they share. The hypervisor defers the han-
dling of specific I/O devices to a privileged partition LPAR0
(logical partition 0 in Figure 1), sometimes called the I/O par-
tition. LPAR1 and LPAR2 run guest operating systems (e.g.,
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Figure 1: Hypervisor architecture augmented with security
services running in an isolated partition.

Linux). Guest operating systems running on vHype are min-
imally changed to replace access to essential but privileged
operations with specific hypervisor calls. Such privileged op-
erations cannot be called directly by guests because they are
powerful enough to compromise the hypervisor. Therefore
their functionality is exported to logical partitions in a con-
trolled and safe way through the hypervisor call interface.
In general, hypervisor calls implemented in the hypervisor
have three characteristics: (i) they offer access to purely vir-
tual resources (e.g., virtual LAN), (ii) they speed up critical
path operations such as page table management, and (iii) they
emulate privileged operations that are restricted to the hyper-
visor but might be necessary in guest operating systems as
well. The hypervisor can, under some circumstances, regain
control over (revoke) resources already allocated.

Security services run in separated and trusted run-time en-
vironments (LPAR3) in Figure 1. As an example of a security
service, we will introduce a policy management service that
manages the formal rules describing access authorization of
logical partitions to shared resources in our sHype security
architecture. Other security services include auditing or par-
tition content attestation.

2.2 Example

As a specific example, we illustrate how mutually suspicious
run-times (e.g., corporate servers running in partitions 1, 2
and program development systems running in partitions 3, 4)
can safely and securely share a single real system platform
by strictly isolating their virtual resources and controlling re-
source sharing (information flow) between them. Currently,
we pursue a medium assurance approach focusing on isola-
tion and explicit resource sharing while minimizing covert
storage channels. Nevertheless, we aim to define an archi-
tecture that can be extended to meet stronger isolation guar-
antees by additionally considering covert timing and storage
channels between run-times.

To explore how information flows between partitions, we
use as an example a hypervisor system running 4 logical par-

titions in addition to the I/O partition. Partitions 1 and 2 share
a virtual LAN labeled A and partitions 3 and 4 share a virtual
LAN labeled B. Partitions 3 and 4 also have virtual SCSI de-
vices that can be mapped onto separate partitions of the same
real SCSI disk (depicted in Fig. 2) or onto separate real SCSI
devices.

vLAN A

LPAR 1 LPAR 2 LPAR 3 LPAR 4

 ...Connect to VLAN ? … Information flow types (S,E,I/O,X)
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Figure 2: Potential information flow on hypervisors through
access to shared resources (S), access to exclusive resources
(E), access to real resources actually redirected over the I/O
partition (I/O), cross-virtual resource sharing (X).

Before we look at information flow in general, we illustrate
a practical scenario by assuming that a virus has infiltrated
partition 3 and resides in files on vSCSI A. This might have
happened due to running vulnerable applications in a badly
protected operating system. This virus can easily infect par-
tition 4 if the operating system in partition 4 mounts vSCSI
A, e.g., over the shared vLAN B. If the virus can spread over
the network (i.e., is a worm), then it can infect partition 4 di-
rectly over vLAN B assuming the partition runs vulnerable
server applications. The virus cannot spread into partitions 1
and 2 because there is no sharing of any resources among par-
titions 3/4 and partitions 1/2 (e.g., no vLAN, no vSCSI). This
thought experiment shows that a hypervisor can permit lim-
ited resource sharing among partitions, while simultaneously
preventing the spread of malicious code to other partitions
resident on the system. Similarly to integrity-related confine-
ment, confidentiality-related confinement can be achieved by
controlling information flow.

2.3 Information Flow
In general, information flow between two or more partitions
can happen if (i) they access the same shared virtual resource
(cf access type S in Fig. 2), e.g., a virtual LAN, (ii) they are



assigned the same exclusive resources at different times, e.g.,
virtual disk, (iii) they access different exclusive virtual re-
sources (cf access type E in Fig. 2), e.g., vSCSI or virtual
memory, that are not correctly isolated against each other, or
(iv) they access virtual resources that are mapped onto uncon-
trolled shared real resources (e.g., Ethernet) or exclusive real
resources (e.g., SCSI device or real memory) that are not cor-
rectly isolated from each other. Some examples will illustrate
these scenarios.

Information flow through shared or exclusive re-
sources. Partition 1 and 2 can exchange information by send-
ing and receiving packets over vLAN A; they share the virtual
LAN resource (vLAN A). Partition 3 and 4 can exchange in-
formation if their disks can be re-assigned from one to the
other partition. In this case, one partition could write to the
virtual disk and the other one could read from it.

Information flow through non-isolated virtual re-
sources. Partitions 1 and 3 can exchange information if their
virtual LANs are connected. Partitions 3 and 4 could share
information via their virtual disks if their distinctive virtual
disks (vSCSI A and vSCSI B) are insufficiently isolated and
allowed addressing of data outside the virtual disk.

Information flow through non-isolated real system re-
sources. Partitions 1 and 3 can exchange information even
if their virtual LANs are not directly connected but are con-
nected both to real Ethernet devices or any other shared real
medium, the sharing of which is not fully controlled by the
hypervisor. Additionally, incomplete separation of real re-
sources can result in information flow. Partitions 3 and 4
can exchange information if their exclusive virtual disks are
mapped onto physical storage areas that change (expand, re-
size) and respective storage is not cleared (object re-use) or
if the real memory mappings change from one partition to
another one without properly cleaning the information con-
tained in the mapped memory areas.

Information flow through covert channels. Information
can be exchanged by observing behavior of other partitions,
e.g., one partition modulating information onto system re-
sources and another partition observing changes in these re-
sources (e.g., available bandwidth, memory, disk space, or
disk response times). These information flows are usually
called covert channels if both parties work together or side-
channels if the observer is an adversary. Their bandwidth
varies depending on the implementation. This is not directly
addressed by our architecture.

2.4 Secure Hypervisors

To provide mandatory access control isolation requires in-
hypervisor control of the information flows illustrated in Fig-
ure 2 for all virtual resources accessible to partitions. This is
the goal of the sHype access control design and implementa-
tion described here.

We are applying policy-based access control enforcing

inter-partition information flow constraints to achieve the fol-
lowing requirements:

• non-exclusive access of partitions to virtual resources
must be guarded and strictly controlled according to the
security policy (sHype mandatory access control)

• exclusive assignment of virtual resources to partitions
must be guarded and strictly controlled according to the
security policy (sHype mandatory access control)

• direct information flow between different virtual re-
sources (type X in Figure 2) must be prevented (hyper-
visor isolation guarantee)

• information flow between real resources that are mapped
to different virtual resources must be prevented (hyper-
visor isolation guarantee and administration)

sHype guarantees the first two properties. It controls ex-
plicit information flow between partitions by use of explic-
itly shared virtual resources (e.g. vLAN). It also guards the
assignment of exclusive virtual resources (e.g. virtual disk).
This control cannot be by-passed by partitions but is enforced
independently inside the hypervisor.

We build our architecture on the strong isolation properties
between virtual resources, which is offered by the hypervisor.
Thus, we assume no information flow of type (x) as described
in Figure 2. Virtual resources connected by an information
flow of type (x) may be considered a single shared virtual
resource by the access control primitives in the hypervisor.

We restrict the scope of information flow controls in this
paper to a single hypervisor platform and introduce mecha-
nisms that restrict information flow over virtual LANs: no
packets are directly passed onto a real network interface. The
only way to send or receive data packets from other systems is
through the I/O partition, which owns the real network device
and can connect to virtual LANs to forward packets as per-
mitted by the security policy. We are currently experimenting
with securely connecting multiple hypervisor systems and ex-
panding information flow control beyond a single system.

2.5 Ultimate sHype Security Goals
We have identified the following six security goals for hyper-
visor environments, all of which are addressed or enabled by
the sHype security architecture:

(SG1) strong isolation guarantees between multiple parti-
tions;

(SG2) controlled sharing (communication and co-operation)
among partitions;

(SG3) platform and partition content integrity guarantees;

(SG4) platform and partition content attestation;



(SG5) resource accounting and control; and

(SG6) secure services (e.g., auditing).

This paper focuses on information flow constraints (SG1 and
SG2) imposed by sHype on partitions. We have work ongoing
to investigate all these security goals.

3 Related Work

Mandatory access control has been designed and imple-
mented for the Linux operating system (c.f. SELinux [1]).
However, controlling access of processes to kernel data struc-
tures has led to an extremely complex security policy. There-
fore, SELinux does not enforce strong isolation properties
equivalent to those offered when running applications on sep-
arate hardware platforms. Operating system security controls,
such as those offered by SELinux are more appropriate for
enforcing mandatory access control among a set of closely
related and cooperating applications, which naturally share
a hardware platform. In a hypervisor system, there are few
resources shared on the virtualization level. This results in
simple security policies when compared to those for operat-
ing system controls.

The improved virtualization support of future Intel proces-
sors [6] will further contribute to higher performance and al-
low guest operating systems to run with few or no changes at
all inside virtual machines.

Achieving strong isolation between workloads –while min-
imizing the trusted computing base– has been a major goal of
micro-kernel and virtual machine research [4, 7, 8, 9, 10,
11, 12]. Madnick and Donovan [13] show formally that the
VMM/OS approach to information system isolation provides
substantially better software reliability and security than a
conventional multiprogramming OS approach. They argue
with redundant security mechanisms that are inherent in the
design of most VMM/OS systems.

We take some steps beyond isolation by enforcing formal
security models that control resource sharing among virtual
machines. This control is based on formal descriptions of ac-
cess rights between partitions and virtual resources (security
policy) enforced inside the hypervisor core. Karger et. al.
[14] examine high-assurance virtualization technology of a
quite complex Virtual Machine Monitor, while our approach
aims at medium-assurance solutions that integrate into exist-
ing hypervisor technology.

4 Reference Monitor Design

sHype deploys a reference monitor interface inside the hy-
pervisor to enforce information flow constraints between par-
titions. Anderson [15] introduces the reference monitor as the
central mechanism for controlling information flow based on
mandatory access controls: A reference monitor enforces the

authorized access relationships between subjects and objects
of a system; its name refers to the notion that all references
by a program to any program, data, or device are validated
against a list of authorized types of reference based on user
and/or program function. Anderson also states essential de-
sign requirements consisting of the reference monitor vali-
dation mechanism to be (DR1) tamper proof, (DR2) always
invoked, and (DR3) small enough to be subject to analysis
and test, the completeness of which can be assured.

Hypervisors offer the ideal place for a reference moni-
tor design that satisfies design requirements DR1, DR2, and
DR3. They wrap the shared system hardware, completely
control the shared and exclusive virtual resources, and are
protected by hardware protection of the CPU from code
running in logical partitions. Complementing the reference
monitor design, sHype strictly separates access control en-
forcement from the access control policy according to the
FLASK [16] architecture.

Figure 3 shows the sHype access control architecture de-
sign as part of the core hypervisor and depicts the relation-
ships between its three major design components. Enforce-
ment hooks implement the reference monitor. They are dis-
tributed throughout the hypervisor and cover references of
logical partitions to virtual resources. Enforcement hooks re-
trieve access control decisions from the access control mod-
ule (ACM).

Partition
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Hook

Object
Core Hypervisor

Access
Control
Module

1. H_Call

2. Authorization Query

3. Authorization Decision

Hypervisor
Security
Policy

Security
Policy

Manager
Partition

Figure 3: Hypervisor-based security reference monitor.

The ACM applies access rules based on security informa-
tion stored in security labels attached to logical partitions
(subjects) and virtual resources (objects) and the type of oper-
ation to make an access control decision. The formal security
policy defines these access rules as well as the structure and
interpretation of security labels for partitions and logical re-
sources. Finally, a hypervisor-interface allows trusted policy
management partitions to efficiently manage the ACM secu-
rity policy.

sHype follows the FLASK access control architecture by
strictly separating the enforcement hooks from the policy.
This has several advantages: (i) it promotes a clear design and



implementation, (ii) it confines the implementation-specific
impact of policy changes to the ACM module, which is
largely independent of the core hypervisor, and (iii) it pro-
motes security policies that are independent of the specific
hypervisor implementation, enabling a separation of security
management from system administration.

Our sHype access control architecture is designed to meet
the following three practical requirements:

• high performance (≤ 1% security-related overhead on
the critical path)

• ability to enforce policies autonomously (without as-
suming co-operation of general partitions)

• allow for the flexible enforcement of various policies,
which guard the information flow between multiple par-
titions

The position of a hypervisor in the system software stack
mandates the highest possible performance because any
penalty will affect the partitions, which depend on the hy-
pervisor for many privileged operations (e.g., memory man-
agement, scheduling, or resource sharing among partitions).
Consequently, a security architecture that introduces non-
negligible overhead will not become a core component of a
hypervisor. We adhere to performance requirements by tak-
ing access control decisions mostly out of the critical path
(e.g., sending packets) and moving them into the less critical
binding time of partitions to resources (e.g., when connecting
a virtual Ethernet adapter to a logical LAN).

High performance and strong access control demand for
trade-offs in the granularity with which resources are con-
trolled. Therefore, we follow a layered approach to systems
security. Our hypervisor security architecture controls ac-
cess to virtual resources on partition-granularity only – for
example, sHype can control network-based communication
between partitions. Any finer-grained access control is de-
ferred to the partition software stack – for example an op-
erating system implementing SELinux with a policy that re-
stricts communication to specific processes inside different
partitions.

Formal security policies specify security relationships be-
tween partitions independently of their technical implemen-
tation. The unified representation of a security policy enables
to define, compare, and validate isolation and sharing proper-
ties over multiple hypervisor systems efficiently. Today, sta-
tic configurations require comparing multiple configuration
files that depend on the hypervisor system release and are
managed by system administrators that not necessarily under-
stand the overall security goals. Misconfiguration of a single
of these files can go easily undetected for a long time, effec-
tively undermining the corporate security policy. A formal
policy states the access rules in a way that is common to a
large range of hypervisor systems and enables the separation

of the duties of system administration (functionality-based)
and system security (policy-based).

To support business requirements, a trusted hypervisor
must support various kinds of policies. The sHype architec-
ture supports Biba, Bell-LaPadula, LOMAC, Chinese Wall,
Caernarvon, as well as other security policies and adapt to
specific business needs.

5 Implementation

First, we describe the vHype isolation properties on which
sHype builds. Then, we describe the sHype reference monitor
implementation. Finally, we describe the security policy and
how it is used to make access control decisions.

5.1 Isolation Properties
Access control in sHype depends on the strong isolation be-
tween virtual resources (VMs) and between the hypervisor
and the virtual machines, i.e. the code running in them.

The hypervisor protects itself against malicious programs
running in logical partitions by retaining complete control
over the physical resources it depends on (e.g., CPU, mem-
ory). On x86 platforms for example, vHype uses CPU protec-
tion rings to ensure that partitions cannot execute privileged
instructions and gain control over resources the hypervisor
depends on. The hypervisor runs in “hypervisor” mode in
CPU ring 0, the highest privileged protection mode. Logical
partitions and the guest operating systems run in ring 2 and
applications on top of the guest operating systems run in ring
3. From a CPU point of view, programs can access configu-
rations in their own ring and rings with higher numbers. This
way, the operating system inside a logical partition running
in ring 2 is still protected against its applications running in
ring 3. The privileged partition implementing partition man-
agement and hardware device drivers runs in ring 2 as well,
however its I/O privilege level is set to 2 (as compared to 0
for normal non-I/0 partitions) and allows direct access to I/O
device memory. The I/O partition is seen as part of the vir-
tual machine monitor infrastructure. The hypervisor depends
on its co-operation to manage the peripheral system hardware
devices.

vHype isolates virtual resources against each other, such
as virtual memory, CPU, vLAN, virtual disks, virtual LAN
or shared virtual memory. For example, the vHype memory
management ensures that logical partitions see only virtual
addresses, which are mapped under the control of the hyper-
visor. The only way to share memory between partitions is
through a shared virtual memory resource. Virtual disks are
statically assigned to partitions and respective physical stor-
age is safely erased before it is assigned or re-assigned to
virtual disks. The CPU represents a resource that has long
been virtualized to allow interleaved execution of multiple
programs on a single real CPU. The conventional context



switch ensures that the CPU state is saved and replaced with
the saved CPU state of the next partition that will be running
on this CPU. Isolation is achieved since no explicit informa-
tion can flow from the former partition context to the new par-
tition context. Different vLANs are also isolated against each
other and must be bridged inside partitions, which are subject
to sHype access control when connecting to the vLANs.

5.2 Access Control Enforcement

To control the sharing of virtual resources between partitions,
sHype mediates access of partitions to exclusive and shared
virtual resources. Mediation is implemented by inserting se-
curity hooks into the code path inside the hypervisor where
partitions access virtual resources. A security hook is a spe-
cialized access enforcement function that guards access to a
virtual resource. In this case, it enforces information flow
constraints between logical partitions according to the secu-
rity policy. Each security hook adheres to the following gen-
eral pattern:

i. gather access control information (determine partition
labels, virtual resource labels, and access operation type)

ii. determine access decision by calling the ACM

iii. enforce access control decision

Using security hooks, sHype minimizes the interference with
the core hypervisor while enforcing the security policy on ac-
cess to virtual resources.

Figure 4 shows the hook that mediates the attachment
(binding) of partition 2 to a virtual LAN vLAN A inside the
hypervisor. First, the security hook looks up the partition se-
curity label range void pointer SSLRP in the partition data
structure and retrieves the security label void pointer OSLP
of vLAN A. Then it queries the ACM for an access control
decision based on the label pointers and the joinvLAN opera-
tion. The ACM decides, whether a subject with the security
range to which SSLRP points is allowed to perform the oper-
ation joinvLAN on the object with the security label to which
OSLP points. If the hook receives the decision permitted,
then the hook continues with normal operation and connects
the partition to vLAN A. The subsequent sending and receiv-
ing of packets via the connected adapter will not be mediated
explicitly. If the hook receives the decision denied, it will
deny this partition access to vLAN A and indicates this to the
partition.

To keep access control overhead on the performance-
critical path near-zero most of the time, we use bind-time au-
thorization and explicit caching of access control decisions.

Bind-time authorization restricts access control decisions
to the time a partition binds to a virtual resource (cf, join-
ing a virtual LAN in Figure 4). Subsequent access to this
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Figure 4: Security hook guarding the joining of a vLAN.

resource (e.g. sending or receiving packets) is implicitly cov-
ered by the access control at binding time. This method ap-
plies to virtual resources that require explicit binding before
they can be used and which can be revoked if necessary. It
works for most high-performance resources, such as vLAN,
vSCSI, shared memory, and vTTY. With bind-time authoriza-
tion, access control decisions occur on the non-critical per-
formance path and the overhead on the critical path will be
near-zero. Even bind-time authorization might require some
security-related control on the performance-critical path, e.g.,
to enforce isolation between virtual LANs. The binding must
be revoked if the policy changes and the access control deci-
sion does not hold any more (cf Section 5.5).

Explicit caching supports access control for virtual re-
sources that do not follow the binding-before-use paradigm
(e.g., signals or spontaneous inter-partition communication).
In this case, we cache access control decisions locally in the
lpar partition structure (preserving cache locality) in a sin-
gle bit per partition and resource: The bit being “1” means
that access is allowed. The bit being “0” means that a new
access control decision is necessary. If only permitted ac-
cess is performance-critical and if access control decisions
are rate-controlled (to counter DOS attacks of malicious par-
titions causing repeatedly time-consuming access control de-
cisions that yield denied), the cache resolves the access con-
trol decision most of the time through local cache-lookup. If
the system configuration allows predicting usage patterns for
non-binding virtual resources, cache pre-loading can move
even initial access decisions out of the critical path. Explicit
caching mechanisms pay for near-zero overhead on the criti-
cal path with additional management and complexity.

5.3 Access Control Module
The ACM stores the current policy, allows flexible policy
management, makes policy decisions based on the current
policy, and triggers call-back functions to re-evaluate access



control decisions in the hypervisor when the policy changes.
The ACM stores all security policy information locally

in the hypervisor and supports efficient policy management
through a privileged H Security hypervisor call. A privi-
leged policy management partition uses this hypervisor call
to manage the security policy stored in the ACM. Privileged
partitions are explicitly assigned an access right for manag-
ing access to the ACM control data structure, which is veri-
fied by a security hook in the H_Security hypervisor call.
This right may only be assigned to a trusted partition. Con-
sequently, the access control for security management is inte-
grated into the general mandatory access control framework.

For initial labeling of virtual resources, the ACM exports
an acm_init call that determines the security label of a vir-
tual resource based on its resource type and ID, and links
the label to the virtual resource. Calls to acm_init are in-
serted where partitions or virtual resources are created and
initialized in the hypervisor core. The ACM also exports the
acm_authorize function, which takes a partition label, a
virtual resource label, and an operation type as parameters
and decides whether access is permitted or denied according
to the security policy. The enforcement hooks call this func-
tion to enforce the policy on access of partitions to virtual
resources. We describe re-evaluating access decisions in case
of policy changes in Section 5.5.

5.4 Security Policy

The security policy performs three major tasks. For each vir-
tual resource object, it defines the requirements to access this
virtual resource. For each partition subject, it defines the au-
thorizations to access resources. Finally, it defines the access
rules that decide whether a logical partition’s rights suffice to
apply a certain operation to a virtual resource object.

To specify access requirements, we attach security labels to
virtual resource data structures (e.g., vLAN). To specify au-
thorizations, we attach security labels to partitions structures.
Those security labels store information needed to make ac-
cess decisions inside the hypervisor. sHype assigns security
labels through a call to acm_init when the respective vir-
tual resource or partition data structures are initialized inside
the hypervisor (c.f. Section 5.3). It retrieves type-specific se-
curity labels from the current security policy and stores point-
ers to them in a pointer variable added to the initialized data
structure (e.g. lpar, vLAN). Following the implementation of
the Linux Security Modules [17], we use void pointers to
attach label structures to virtual resources and partitions in
sHype. This way, the hypervisor-core remains independent
of the policy representation. This promotes modularity of the
code for maintenance and assurance reasons.

To allow access of partitions to virtual resources, the par-
tition’s label must reflect the required authorization to access
the resource. We say the partition’s security label must “dom-
inate” the resource’s security label with regard to the access

type. The interpretation of security labels and the implemen-
tation of the “dominates” predicate are specific to the security
policy. We use the Caernarvon [18] security policy.

Caernarvon is a static security policy that does not re-label
resources during normal operation. Because of the static re-
source labels, access control decisions change only if the un-
derlying security policy itself changes. The benefit is that
we can move access control decisions out of the critical path
into the binding phase of virtual resources (e.g., mounting a
virtual disk or connecting to a virtual LAN). This access de-
cision holds during subsequent use of the resource until the
policy is explicitly changed. Figure 5 illustrates the label
structure and interpretation for sHype.

Universal Access Class (UAC):

OAC1 OACm...Tag
all OAC must have the
same type-tag (conf/int)

Organizational Access Class (OAC):

Org
ID

Organizational
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Organizational
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...
Type
C/I

Integrity_UAC tag
Confidentiality_UAC tag

sHype Security Label sHype Security Label Range

Integrity_UAC tag
Confidentiality_UAC tagFrom:

To: Integrity_UAC tag
Confidentiality_UAC tag

Figure 5: sHype security label structure.

Security labels are composed of organizational access
classes (OAC) and universal access classes (UAC). An OAC
consists of a type field, describing whether this is a secrecy or
an integrity class. Following is the organizational identifier
(orgID), which describes the organization that is controlling
the meaning of the level information. OACs can only be com-
pared if they have the same orgID (e.g., IBM). We define un-
classified, secret, top secret levels for confidentiality classes
and low, medium, and high levels for integrity classes. It fol-
lows a number of categories, such as Research or Human Re-
sources. UACs allow to aggregate multiple OACs with the
same OAC type and to easily reference them by their UAC
tag in the security label. For legacy support, we define a spe-
cial UAC tag UAC NONE, used to label resources that are not
part of the security model.

Each virtual resource (object) has attached a security label
(describing requirements to access this resource) consisting
of one integrity UAC and one confidentiality UAC. Each par-
tition (subject) is assigned a security label range consisting
of a from security label and a to security label denoting its
clearance.

For most partitions, the from and the to labels of the secu-
rity label range are identical. We call such partitions single-



level partitions because they are confined to a single security
domain defined by a single confidentiality and integrity UAC.
Single-level partitions cannot leak data between different se-
curity domains due to our access controls. A partition must
be a single-level partition, if it is not trusted to keep data of
different security levels safely apart. Examples are partitions
that can protect the confidentiality of corporate customer data
but cannot guarantee that their run-time environment isolates
such data securely against unclassified data. Allowing such
a partition to handle multiple levels of data would allow data
assigned to one security level to leak into data assigned to an-
other security level. From an information-flow perspective, a
single-level partition cannot create a data-flow between dif-
ferent security levels or categories inside the partition. It
is securely confined by the sHype access control architec-
ture. An integrity-related example would be a partition that is
known to run vulnerable software but produce high-integrity
output as long as it consumes only high-integrity input. Al-
lowing such a partition to receive malicious (low-integrity in-
put) would allow this partition to produce low-integrity output
and thus affect other high-integrity partitions with it. Such a
partition must be confined into a high-integrity security do-
main.

Allowing only single-level partitions would fully isolate
different security domains represented by different UACs.
However, often there is need to allow controlled informa-
tion flow between different security domains to implement
distributed services. In Caernarvon, trusted entities can be
assigned label ranges allowing them to access multiple se-
curity domains. In sHype, we call trusted partitions that
have label ranges multi-level partitions. Multi-level partitions
are cleared for multiple security domains. Their clearing is
equivalent to all labels that fall into the range spanned by their
from and to labels. However, such multi-level partitions must
be carefully designed to maintain the separation of those do-
mains.

The capability to enforce information flow control con-
straints determines whether a partition can assume multi-level
status. Once the hypervisor allows a

partition to participate in different security levels, the hy-
pervisor can no longer independently enforce the boundaries
but must rely on the co-operation of the multi-level partition
to prevent leaking of information between the levels inside
the partition. For example, a trusted router can connect both
to a low-integrity and to a high-integrity vLAN and ensure
that data can only pass from the high-integrity vLAN towards
the low-integrity vLAN or that low-integrity data is properly
sanitized before being processed inside the partition or for-
warded into the high-integrity vLAN. Another example is a
partition implementing the network pump [19], which can
enforce network traffic to flow from unclassified to classified
domains but not vice versa. To promote the least-privilege
principle, sHype allows restricting label ranges to certain vir-
tual resources (e.g., vLAN).

5.5 Change Management

When the policy changes, we must explicitly revoke a shared
resource from a partition that is no longer authorized to use
it. Since we use extensive caching, we must propagate access
authorization changes into the caches near the enforcement
hooks. For this purpose, each enforcement hook defines a
re-evaluation callback function. When invoked by the ACM,
the re-evaluation function (i) re-evaluates the original access
control decision and (ii) revokes shared resources in case the
authorization is no longer given.

Figure 6 shows the hooks for evaluating and re-evaluating
access control decisions for a partition X joining vLAN Y
(bind-time authorization). Binding an adapter of a partition
to a virtual LAN initially triggers an access control decision.
This decision is assumed valid for subsequent send and re-
ceive operations. Once the policy changes, the ACM calls
the re-evaluation callback at the enforcement hook inside the
vLAN implementation to validate this initial access control
decision. If access is still permitted under the changed policy,
no further action is taken and continuous access to the vLAN
is granted. If access is not permitted under the changed pol-
icy, the original joinvLAN operation is reverted and the ac-
cess to the vLAN is disabled for the partition. We revoke the
binding of a virtual Ethernet adapter by disconnecting the link
between the virtual Ethernet adapter and the vLAN structure.
This way, sending further packets to a vLAN, the related hy-
pervisor call will return an error code to the partition. Receiv-
ing data packets on this adapter is no longer possible because
its virtual Ethernet MAC address is no longer registered with
the vLAN. Packets in the sending and receiving queues can
be removed. To the operating system inside the partition a
revocation looks as if the network cable was unplugged.
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Figure 6: Re-evaluating a joinvLAN access control decision.

Where we use explicit caching, e.g. spontaneous IPC or
events, policy changes result either in invalidating the ac-
cess control cache entries by writing “0” into the cache entry
(inducing re-evaluation at the next use) or in re-loading the



access control entries (inducing re-evaluation immediately).
In both cases, changing the policy involves re-evaluating af-
fected cached access control decisions. We currently re-
evaluate all policy decisions for all hooks when a policy
change occurs, i.e., we don’t interpret the policy changes to
reduce the re-evaluation to those hooks that actually are af-
fected. If policy changes occur more often, then the trade-off
might change and affording more control code to restrict the
necessary re-evaluations to affected partitions or resources
might prove worthwhile.

6 Multi-level Secure LAN Experiment

Figure 7 illustrates how labels, label ranges, and access con-
trol decisions are related. This example considers confiden-
tiality requirements only. In the figure, two different virtual
LAN domains vLAN A and vLAN B are defined. vLAN A has
the object security label {none,none} and is used for legacy
partitions that do not have confidentiality or integrity require-
ments. Such a label identifies resources that do not participate
in the security model. Only partitions that do not participate
in the controlled sharing are allowed to access such labeled
resources (legacy support). vLAN B is controlled and has
the object security label {ibm_secret, none} requiring at
least ibm_secret clearing of partitions connecting to it (no
integrity requirements). Without loss of generality, this exam-
ple does not consider the category component of the UAC. If
the UAC includes a category component, any partition con-
necting to vLAN B would have to be cleared fore vLAN B’s
category as well as the confidentiality level.

Figure 7 shows logical partitions LPAR1, LPAR2,
and LPAR3 connecting to the virtual LANs A and B.
LPAR1 and LPAR2 have the same security label range
{{ibm_secret,none}from, {ibm_secret,none}to}.
In contrast, LPAR3 has the subject security label range
{{none,none}from, {none,none}to}.
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Figure 7: Multi-level secure vLAN based on sHype.

In the above configuration and security policy set-
ting, sHype will allow LPAR1 and LPAR2 to connect to
vLAN B because they are cleared for confidentiality level

ibm_secret and there are no integrity requirements spec-
ified. None of them will be allowed to connect to vLAN A.
Only LPAR3 will be able to connect to vLAN A.

Results. To implement vLAN mandatory access control in
vHype, we added one hook into the hypervisor call register-
ing a partition’s virtual Ethernet adapter to a virtual LAN.
This hook calls acm_authorize as described in Figure 4.
We inserted calls to acm_init into the initialization phase
of virtual Ethernet adapters and partition data structures for
initial labeling. Due to the bind-time authorization, there is
no need for access control decisions when sending or receiv-
ing packets over the vLAN. Thus, we achieve zero overhead
for access control on the critical path. There are only a few
lines of sHype code in the architecture-dependent part of the
vHype implementation (PowerPC versus x86), e.g., the defin-
ition of a new H_Security hypervisor call allowing policy
partitions to manage the policy within the ACM and the inser-
tion points for the acm_init call for labeling the architec-
ture dependent partition data structure. We have successfully
tested the revocation of vLAN access for partitions in case of
policy changes. We revoke the binding of a virtual Ethernet
adapter by disconnecting the link between the virtual Ether-
net adapter of a partition from the vLAN structure. To the
operating system inside the partition a revocation looks as if
the network cable was unplugged.

7 Security Evaluation

General Approach. From the standpoints of reliability and
security, one of the most important aspects of a hypervisor-
based system is the high degree of isolation and its potential
for controlling access of virtual machines to resources and re-
lated information flow. Its ability to provide independent se-
curity mechanisms contributes to increased security. We em-
phasize that mandatory access control, residing completely
inside the hypervisor, is beneficial even if the operating sys-
tem running in a virtual machine deploys its own mandatory
access control. It provides a layered approach to security and
offers a safety net in case operating system controls fail.

Reference Monitor Design Limitation. The reference
monitor concept is predicated upon positive identification of
the identity of a partition and the correct correlation of this
identity with security control information (here: labels, label
ranges). Thus, we assume the correct identification of par-
titions and resources when initially labeling them. Further,
faulty security policies invalidate the security model and offer
no provable protection. The model also requires properly op-
erating or fault-tolerant hardware and physical components.
Sharing the hardware enables economies of scale of invest-
ments in this respect.



Next, following Anderson’s study [15], any program that is
not subject to invoking the reference monitor to access shared
resources must be considered as part of the security “appa-
ratus” and becomes subject to design goals DR1 and DR3.
These require that the security apparatus be tamper-proof and
small enough to be subject to analysis and tests. Such code
includes in our case the hypervisor and any code the hyper-
visor relies on for its correct functioning and access control.
Therefore, separating hardware device drivers into a logical
partition aims at an architecture that allows excluding much
of the device driver code from becoming subject to DR1 and
DR3. Prevalent VMM approaches including non-separated
device drivers, partition management, and many more value-
added functions in the same protection domain as the core
virtualization layer will necessarily fail to achieve DR1 and
DR3 due to the large code base.

Finally, there exist covert channels between partitions that
are not controlled by our reference monitor approach and not
prevented by existing isolation mechanisms. These covert
channels reflect information that a partition gains through ob-
serving changes in the system state that is influenced deter-
ministically by another partition. Available bandwidth, mem-
ory, disk space, or CPU are examples of possibly observable
system state influenced by partitions. There are well-known
ways to limit the bandwidth of such covert channels. How-
ever, eliminating all covert channels is not a feasible goal us-
ing common off-the-shelf system components.

Reference Monitor Implementation Limitations. The se-
curity guarantees implemented by sHype/vHype depend on
the hypervisor and the policy management. The implemen-
tation of the hypervisor and I/O partition depends on the ex-
pected behavior of the hardware against which the develop-
ers have written the driver code. Additionally, our reference
monitor model requires full control over the hardware, e.g.
persistent storage, in order to ensure that controlled sharing
above and inside the hypervisor layer is not circumvented by
uncontrolled sharing below it. Allowing attackers to access
the system hardware or hardware I/O devices would not only
question the integrity of the hypervisor and reference moni-
tor implementation but also violate the formal design require-
ment DR2 (cf Section 5.2) because access to the shared re-
sources through the hardware would not invoke the reference
monitor access control.

More specifically, sHype guarantees that any system-
internal information flow between partitions is subject to
mandatory access control governed by a formal security pol-
icy. Our threat model includes malicious behavior of con-
trolled partitions; it excludes malicious behavior or corrup-
tion of the hypervisor and privileged partitions (policy parti-
tion, I/O partition). To confine the impact of vulnerabilities
inside the complex I/O partition, we plan to further divide
it into independent parts and restrict their capabilities (secu-
rity label ranges) by following the principle of least privilege.

As opposed to operating systems, which change often, de-
vice drivers of the I/O partition in a VMM environment don’t
change often and therefore justify investments to assure they
work correctly. Additionally, separating the device drivers
from the core hypervisor and from each other eliminates un-
necessary dependencies between these entities by introduc-
ing controlled boundaries that contain possible vulnerabili-
ties. Minimizing the trusted computing base for the sHype
–i.e., the hypervisor, I/O partition, and policy partition– is a
continuous design goal.

8 Conclusion and Outlook

We presented a secure hypervisor architecture, sHype, which
we are implementing into the vHype IBM research hypervi-
sor. sHype provides boot and run-time guarantees currently
lacking in most systems, addresses prevailing operating sys-
tem security weaknesses by providing confinement oppor-
tunities, and enables secure communication and sharing be-
tween workloads on the same platform and potentially across
multiple platform and organizational domains. Compared to
operating system security controls, our resulting hypervisor-
based security architecture offers stronger isolation of work-
loads and a security evolution path through sHype. We de-
scribed the design and the implementation of the basic hyper-
visor security architecture and have successfully applied it to
enable flexible policy-driven confinement of virtual LANs.

A secure hypervisor, such as sHype, enables its users to run
a trusted operating system securely alongside a distrusted op-
erating system on a single platform. These capabilities enable
corporations to run text processing applications or do pro-
gram development in function-rich operating environments
and –securely isolated from it– to run sensitive applications
processing confidential data in more secure and restricted
operating environments. End users can start a trusted Web
browser for Internet-banking (or for accessing classified data
bases) in its own partition, which might prove a valuable step
to on-demand security environments and enable the prolifer-
ation of user-friendly, functionrich, and less secure applica-
tions alongside highly sensitive applications.

Currently, we are extending the security architecture to
cover multiple hardware platforms – involving policy agree-
ments and the protection of information flows crossing the
hardware platform boundary (i.e., leaving the control of the
local hypervisor). We need to establish trust into the seman-
tics and enforcement of the security policy governing the re-
mote hypervisor system before allowing information flow to
and from such a system. To this end, we are experimenting
with establishing this trust through the Trusted Computing
Group’s Trusted Platform Module [20] and a related Integrity
Measurement Architecture [21]. Future work includes the ac-
curate accounting and control of resources (such as CPU time
or network bandwidth) and generating audit trails appropriate
for medium assurance Common Criteria evaluation targets.
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