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Abstract

We describe the design and implementation of se-
cure network objects, which provide security for object-
oriented network communication. The design takes ad-
vantage of objects and subtyping to present a simple but
expressive programming interface for security, support-
ing both access control lists and capabilities. The imple-
mentation of this design fits nicely within the structure
of the existing network objects system; we discuss its
internal components, its performance, and its use in
some applications.

1 Introduction

Object-oriented communication has become popular in
distributed systems [2, 23, 19]. With objects or with-
out them, distributed systems typically rely on net-
works with no low-level support for security; the vul-
nerability of distributed systems is by now evident and
worrisome [24, 4]. Therefore, a need exists for secure
object-oriented communication.

We describe the design and implementation of se-
cure network objects. Secure network objects extend
Modula-3 network objects [18, 2] with security guaran-
tees. When a client invokes a method of a secure net-
work object over the network, the main security prop-
erties are:

e The client must possess an unforgeable object ref-
erence.

e The client and the owner of the object can choose
to authenticate each other.

e The arguments and results of the method invoca-
tion are protected against tampering and replay,
and optionally against eavesdropping.
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For high-speed bulk communication, the network ob-
jects system supports buffered streams called readers
and writers. We make these streams secure also.

Our design accommodates both access control lists
(ACLs) [11] and capabilities [6]. It seems natural to
treat network object references as capabilities; more-
over, these capabilities can be implemented efficiently.
However, capabilities suffer from the well-known con-
finement problem: it is hard to keep them sufficiently
secret [10]. The support for ACLs allows implemen-
tors to limit this problem, and to use identity-based
security whenever that is appropriate, in particular for
auditing. Systems with both ACLs and capabilities are
not new; we include some comparisons in section 6.

The central goal of our work was the integration of
security and network objects. We have obtained the
following features:

e Applications can use security easily, with minimal
code changes.

— Security is mostly encapsulated within the
network objects run-time system.

— Objects and methods provide convenient u-
nits of protection.

— Subtyping expresses security properties quite
simply. Secure network objects are a subtype
of regular network objects.

e Through the combination of ACLs and capabili-
ties, the security model is rich enough to enable
applications with sophisticated security require-
ments.

e The implementation of our design is reasonably
straightforward. In this respect, we benefited from
the structure of the existing network objects sys-
tem. We also borrowed ideas from previous work
on authentication [27]: each node runs an au-
thentication agent that is responsible for manag-
ing keys and for identifying local users to other
nodes. We feel that our experience partially vali-
dates those previous efforts.



The next section presents our programming inter-
face. Sections 3 and 4 describe the two main compo-
nents of our system: the authentication agent and the
run-time system. Section 5 discusses experience with
secure network objects, including performance mea-
surements and some example applications. Section 6
discusses related work.

2 Programming Interface

In a world with fast CPUs, no government export con-
trols, and pervasive use of cryptographic credentials,
we would give uniform security guarantees for all ob-
jects, even for those that do not require them. This
would make for a simpler system and a shorter paper.

As a compromise, we define network objects with
three levels of security: (1) no security; (2) authentic-
ity; (3) authenticity and secrecy. We call the last two
kinds secure network objects. A secure invocation is
the invocation of a method of a secure network object.

An important characteristic of our design is that it
gives security guarantees for whole objects rather than
for individual methods. This allows us to specify the
properties of secure network objects through subtyp-
ing, rather than by inventing new language features.
We have a type of objects with no security, a subtype
with authenticity, and a further subtype that adds se-
crecy.

These types are explained in the following sections,
along with a type to represent identities. We postpone
the discussion of readers and writers to section 2.6.

2.1 Network Objects (Background)

A Modula-3 object is a reference (pointer) to a data
record paired with a method suite. The method suite
is a record of procedures that take the object as first
parameter. A method invocation specifies a method
name, an object, and additional arguments. It may
yield results, consisting of a return value and values
for any VAR parameters.

A network object is a reference meaningful through-
out a network; its methods can be invoked from mul-
tiple address spaces, possibly on different nodes. A
method invocation is remote if it crosses an address-
space boundary. Method invocations have at-most-
once semantics (at least in the absence of attackers).
Each network object has one address space as owner
(or server); the object always has the same owner.
Other address spaces are clients. Typically, each host
exports a well-known network object that acts as a lo-
cal name server. To import an object, a client may
contact the name server of the owner of the object, or

it may receive the object as argument or result of a
remote invocation.

Each client of a network object has a special object,
the surrogate; passing a network object to a new client
causes a corresponding surrogate to be created at the
client. The client invokes the methods of the surrogate,
which in turn invoke the methods of the object at the
owner. The presence of a surrogate is invisible to the
programmer.

An object type specifies a collection of methods. A
new object type can be defined as a subtype of an exist-
ing object type; the new type may inherit some meth-
ods from the existing type, may override others, and
may add some methods of its own. The type NetObj.T
is the base type for the network object subtyping hi-
erarchy: all types of network objects are subtypes of
NetObj.T; the type NetObj.T does not specify any
methods. In general, network objects of type NetObj.T
are not secure.

2.2 Authenticity

We introduce a subtype AuthNetObj.T of NetObj.T.
Network objects of type AuthNetObj . T are unforgeable
references. When a client invokes a method of an object
of type AuthNetObj.T, the following guarantees hold
(even in the presence of attackers):

1. Integrity: The invocation that the server receives
is exactly the one issued by the client. The results
that the client receives are exactly the ones issued
by the server as a response to this invocation.

2. At-most-once semantics: The server receives the
invocation at most once. The client receives the
response at most once.

3. Confinement: If the invocation or the response
contains a secure network object, an eavesdrop-
per does not learn enough to invoke a method of
that object.

By (1), the server knows that the client has the
method name, the object, and all additional arguments
of the invocation; the client knows that the server has
the results. In addition, since an object has a unique
server, that same server responds to all invocations of
methods of the object.

By (2), client and server are protected against re-
plays.

By (3), a secure network object can be treated as a
capability or protected name [17]. If a secure network
object is passed only from the server to a single client
in a secure invocation, the server knows that any later
invocation using this object originates in this client.



More generally, if the object is passed only in secure
invocations between trusted parties, the server knows
that any later invocation using this object originates in
a trusted party.

One could imagine extending (3) to insecure invoca-
tions; one would protect secure network objects even
when they are passed in insecure invocations. However,
there is not much gain in doing this. For instance, the
result of an insecure invocation may be a secure net-
work object; there is little point in protecting this result
against eavesdroppers because any address space could
invoke the method that gives this result.

2.3 Secrecy

For secret communication, we introduce a subtype
SecNet0Obj.T of AuthNetObj.T. When a client invokes
a method of an object of type SecNetObj.T, the fol-
lowing additional guarantee holds:

4. Secrecy: An eavesdropper does not obtain any
part of the method name, the object, the addi-
tional arguments, or the results of the invocation.

However, we do not attempt to provide perfect an-
onymity. An eavesdropper may recognize that two
method invocations are for the same object. As ex-
plained in the next section, an eavesdropper may also
learn who is communicating.

2.4 Identity

An identity consists of a user name and a host name.
For simplicity, we assume that each address space is
running on behalf of one user on one host, and we
associate with each address space the corresponding
identity.

We introduce a type to represent identities:

INTERFACE Ident;

TYPE
T <: DBJECT METHODS
userName(): TEXT;
hostName(): TEXT;
END;

PROCEDURE Mine(): T;
END Ident.

This interface describes a type Ident.T, exposing
the methods userName and hostName. (Ident.T is an
object type, but not a network object type.) Each
of userName and hostName takes no arguments and
returns a string. An identity object is an object of

type Ident.T. The interface also provides a proce-
dure Ident.Mine; a call to Ident.Mine in an ad-
dress space always returns the identity of the address
space. Attempting to pass any identity other than
Ident.Mine() in a remote invocation is a run-time er-
ror that raises an exception; this behavior is chosen
for programmer convenience, but is not necessary for
security.

The following guarantee is associated with the type
Ident.T:

5. If an identity object is passed as argument or re-
sult of a secure remote invocation, the receiver is
assured that calls on userName and hostName will
return the identity of the sending address space.

In contrast, an identity object received in an insecure
invocation may not identify its sender—the sender may
have been dishonest.

Even if an invocation is secure, the anonymity of
an address space that sends Ident.Mine() is not pro-
tected: an eavesdropper can obtain the corresponding
user name and host name. In fact, an eavesdropper can
deduce host names simply from the pattern of commu-
nication between address spaces, even when no identi-
ties are sent. On the other hand, if an interface does not
require the exchange of identities, its users can remain
anonymous; in principle, an address space discloses the
name of its user only as a deliberate step.

Our treatment of identity suffices for our current ap-
plications and enables us to take advantage of existing
mechanisms such as Kerberos [25] or Sun’s secure RPC
system [26]. However, it would be straightforward to
elaborate our notion of identity and to allow each ad-
dress space to have multiple identities. In particular,
we could borrow from the work of Lampson, Wobber,
et al. [12, 27]; our type Ident.T is a simplified version
of the type Auth described in that work.

It is not hard to imagine other schemes for com-
municating identities. For example, identity objects
could be passed explicitly or implicitly on every call. In
choosing our scheme, we have been careful to avoid lan-
guage changes, and have attempted to minimize over-
head.

The security guarantee associated with the type
Ident.T is the basis for authentication. Given au-
thentication, we can program various authorization
mechanisms, and particularly reference monitors with
ACLs. Several designs are possible. For example, a se-
cure network object may include a method checkACL
for making access-control decisions; the arguments of
checkACL are a mode m (such as read or write) and
an identity i; the result is a boolean that indicates
whether the user with identity i is allowed access with



mode m to the object. In the intended implementation,
checkACL compares i with names kept in lists (that
is, in ACLs). Additional methods enable the modifica-
tion of the ACLs. When group-membership checks are
needed, checkACL can consult group registries across
the network using secure invocations.

2.5 Discussion: Using Capabilities and
Identities

One of the main applications of identity objects is in
bootstrapping trust. A client typically obtains its first
secure network object as result of an invocation on an
insecure network object, often a name server. A pri-
ori, there is no trust between the owner of the secure
network object and the client. This trust is established
when client and server exchange and test identity ob-
jects. Once this has been done, they may choose to
pass other secure network objects. Because these ob-
jects are obtained as part of secure invocations, further
checks of identity may not be necessary.

For example, an insecure name server may ex-
port a secure network object fs residing on a file
server. Although fs is secure, anyone can obtain fs
and invoke its methods. Therefore, it is reasonable
for the file server to expect an identity as argument
of any method invocation. When a client c issues
the call fs.open("/etc/motd", Ident.Mine()), the
open method should check the identity of c. If this
check succeeds, the open method may return another
secure network object £, which represents the open file
"/etc/motd"; it may also return the identity of the file
server. Then c may check the identity of the file server
and invoke f.read(). Because c and the file server
have authenticated one another, ¢ and the owner of f
may choose not to authenticate one another further,
even though the owner of £ need not be the file server.

Identity objects have important applications beyond
bootstrapping. They allow a server to confine the use
of capabilities to particular clients. Additionally, iden-
tities can be logged to construct an audit trail.

In our example, ¢ could pass its identity to the read
method of £, which could check that c is a particular
user, or belongs to a particular group. The identity
check provides protection even if c¢ publishes £. The
read method could also record the names of all callers,
for future inspection.

2.6 Readers and Writers

Modula-3 includes buffered streams, called readers and
writers. For example, a reader might be the stream
of data from a file or from a terminal. The network

objects system allows readers and writers to be passed
between address spaces, as follows: an address space
creates a reader or writer, and passes it to one other
address space, which reads from it or writes to it, but
never passes it. The two address spaces can then use
the reader or writer to transmit data directly on their
underlying network connection, without the overhead
of method invocations.

Readers and writers are treated specially when
passed in secure invocations:

6. If a reader or writer rw is passed as argument or
result of a secure invocation, operations on rw have
the same security guarantees as the invocation.

For instance, if a reader rd is passed as argument in the
invocation o.m(rd), and o is of type AuthNet0Obj.T,
then operations on rd are secured in the same way as
operations on an object of type AuthNet0Obj.T. There-
fore, data read from rd is protected just as if it had
been passed as an argument in the invocation. The
example given in section 2.7 further illustrates the use
of readers and writers.

An alternative treatment could be based on new
types for readers and writers with security proper-
ties (analogous to AuthNetObj.T and SecNetObj.T).
Modula-3 does not support multiple inheritance, so in-
troducing these new types could have been trouble-
some. We have chosen our scheme in order to allow
existing classes of readers and writers to be made se-
cure without modification.

2.7 An Example

Let us consider a trivial terminal server that offers
shells for remote users. Before a user gets a shell,
the server obtains the user’s identity, both to verify
that the user is legitimate and to associate the identity
with the shell. On the other hand, the user obtains the
server’s identity, and can check that the server is the ex-
pected one and not an impostor. Once the user has the
shell, the user’s commands and their results are pro-
tected against tampering, replay, and eavesdropping.
The terminal server exports the following interface:

INTERFACE STS;
IMPORT SecNetObj, Ident, Rd, Wr;

TYPE
T = SecNetObj.T OBJECT METHODS
owner(): Ident.T;
create_shell(id: Ident.T; rd: RA.T; wr: Wr.T);
END

END STS.



This interface declares the object type STS.T as a
subtype of SecNet0bj.T with two new methods, owner
and create_shell. The owner method returns the
identity of the server (by calling Ident.Mine). The
create_shell method creates a connection, starts a
shell with the identity of the user, and connects the
streams rd and wr as standard input and output, re-
spectively.

A simple client program might be:

MODULE Client EXPORTS Main;
IMPORT NetObj, Ident, STS, Stdio;
CONST serverHost = "foo.bar.ladida";

VAR
agent: NetObj.Address;
sts: STS.T;
server_ident: Ident.T;
BEGIN
agent := NetObj.Locate(serverHost);
sts := NetObj.Import("STS", agent);
server_ident := sts.owner();
IF server_ident.userName() = "root"
AND server_ident.hostName() = serverHost
THEN
sts.create_shell(Ident.Mine(),
Stdio.stdin, Stdio.stdout);
ELSE
(* the server is an impostor *)
END;
END Client.

The client program imports an object sts of type
STS.T and verifies the identity server_ident of its
owner. If this check succeeds, the client program starts
a shell by calling sts.create_shell. Since STS.T is
a subtype of SecNet0bj.T, the shell’s standard input
and output benefit from the guarantees associated with
SecNetObj.T.

3 Authentication Agents

So far we have focused on the design of a programming
interface for security; in the remainder of the paper
we describe our implementation for this programming
interface. Our system has two main components, the
authentication agent and the run-time system. We de-
scribe the first in this section and the second in the
next.

In our system, each node runs an authentication
agent. An authentication agent is a process that assists
application address spaces for the purposes of security.
It communicates with its local clients only via local

secure channels. In our implementation, the authen-
tication agent is a user-level process; as local secure
channels we have used Unix domain sockets in one ver-
sion of our implementation and System V streams in
another. Each agent is responsible for managing iden-
tities and keys, as follows.

When an address space receives an identity object,
it can ask the local agent for the corresponding user
name and host name. The agent answers this question
by communicating with its peers; each agent knows the
name of its host and the user names associated with its
clients.

The agent also provides channel keys. A channel key
is an encryption key shared by two address spaces. The
agent performs key exchange with its peers in order to
generate these channel keys for its clients.

When the agent negotiates a new channel key, it also
negotiates an expiry time for the key and a key iden-
tifier. A key identifier allows the sender of a message
to tell the receiver which key was used for constructing
the message. The key identifier can be transmitted in
clear as part of the message, while the key itself should
not be. The agent picks key identifiers so that they are
unambiguous.

Our design encapsulates all of the key exchange ma-
chinery in the authentication agent. We have tried two
implementations of key exchange, one based on our own
protocol and another that relies on Sun’s secure RPC
authentication service. The change of implementation
was transparent to user address spaces. In the second
implementation, we wrote 1400 lines of C code for the
agent.

We took the idea of using an authentication agent
from the work of Wobber et al. [27]. The authenti-
cation agent described in that work is more elaborate
than ours; for example, it deals with delegation and
supports channel multiplexing. These features could
be incorporated in our system, though they may pre-
clude the use of off-the-shelf authentication software.

4 The Run-time System

In this section we describe the security-related code
that runs in application address spaces. We adapted
the original code of Modula-3 network objects, making
a few changes:

e We defined secure network object references to be
capabilities.

o We extended the protocol used by network objects
with security information and with functions like
message digesting and encryption.



e We modified the run-time system, adding marshal-
ing code and cryptography.

The changes were relatively small. We added 2500 lines
of Modula-3 code to the run-time system. We also inte-
grated public-domain implementations of DES [16] and
MD5 [22] in C. We did not modify the overall structure
of network objects.

4.1 Capabilities

The wire representation of an insecure network object
is a pair (s, objid), where:

e sis an address space identifier for the owner of the
object,

e objid is an object identifier, which distinguishes
this object from others with the same owner.

The wire representation of a secure network object
is a tuple

(s, objid, capid, key, exp)
with the following additional components:
e capid is a capability identifier,
e Ley is a key associated with capid,
e ezxp is an expiration time.

The tuple (s, objid, capid, key, exp) is a capability. The
capability is created by the owner of the object. The
key is the secret that is shared between the holders
of the capability and the owner of the object. The
key may never appear in clear on the network: it is en-
crypted using a channel key when transmitted between
address spaces in secure invocations. The components
s, objid, and capid determine key uniquely, and thus
serve as key identifier.

The capability becomes invalid once its expiration
time has passed. The use of an expiration time can
be beneficial in revoking a capability; it also limits the
use of the key. The client run-time system refreshes the
capabilities it holds before they expire. This is trans-
parent to the client application. Each secure network
object has a hidden method that the client run-time
system can call to obtain a fresh capability for the ob-
ject.

In general, more than one capability may be in use
for any given object. The owner of an object maintains
a set of valid capabilities for the object, and is careful
not to give out capabilities that are about to expire.

4.2 Protocol

If a client ¢ holds a network object reference (s, objid)
for an object of type NetObj.T, an invocation of
a method of the object consists of a request from
c and a reply from the owner s. The request is
(Request: ¢, s, objid, reqdata), where reqdata includes
the method name and arguments of the invocation.
The reply is (Reply: ¢, s, repdata), where repdata con-
tains the results of the invocation.

If a client ¢ holds a capability (s, objid, capid,
key, exp) for an object of type AuthNet0bj.T, both the
request and the reply are modified. We assume that
the local authentication agents for ¢ and s have au-
thenticated one another, and that they make available
a channel key chankey for communication between c
and s. This key will be used for signing the request
and the reply, and sometimes for encryption, as fol-
lows.

The request has two parts, a body and a signature.
The body, regbody, is:

(Request: ¢, s, objid, capid, mid, reqdata)

where mid is a message identifier that ¢ has never be-
fore attached to a request signed using chankey. The
signature is:

Hash(reqbody, chankey, key)

where Hash is a cryptographic hash function (a one-
way message digest function such as MD5). Upon re-
ceipt of the request, s verifies that mid is not a dupli-
cate and checks the signature.

Like the request, the reply has a body and a signa-
ture. The body, repbody, is:

(Reply: ¢, s, mid, repdata)
The signature is:
Hash(repbody, chankey, key)

Upon receipt of the reply, the client verifies that c, s,
and mid match those of the request, and checks the
signature.

Both regdata or repdata may contain capabilities and
identity objects. These are treated specially:

e On the wire, capability keys are encrypted under
chankey.

e The wire representation of an identity object is
simply a placeholder. When ¢ (or s) receives such
a placeholder, it replaces the placeholder with an
identity object constructed locally; the methods
of this identity object call the local authentication
agent to obtain the user name and the host name
associated with s (or ¢, respectively).



For an object of type SecNet0bj.T, the protocol is
the same, except that both the request and the re-
ply are completely encrypted under the channel key
chankey.

So far we have ignored readers and writers, because
their discussion is independent of that of the protocol
and because security for them is obtained by reducing
them to secure network objects. In the existing im-
plementation of network objects, passing a reader or
writer rw amounts to passing a network object called a
voucher. The voucher has a type with special marshal-
ing routines; it mediates communication over rw. For
security, we arrange that the type of the voucher be a
subtype of AuthNet0Obj.T or SecNet0Obj.T.

We can now justify the guarantees listed in section 2:

1. The signatures provide integrity. Since only ¢ and
s have chankey, only they could have generated
Hash(regbody, chankey, key). If s never generates a
request of the form (Request: ¢, s, ...), which ap-
pears to come from ¢, then s knows that only ¢
could have generated Hash(reqbody, chankey, key),
and hence that ¢ must have endorsed regbody. Sim-
ilarly, ¢ knows that s must have endorsed repbody.
Moreover, the request and reply are matched be-
cause they both include mid.

2. At-most-once semantics is guaranteed because s
checks that at most one request from ¢ includes
mid and is signed using chankey; and because ¢
accepts replies only for outstanding calls.

3. ¢ and s demonstrate knowledge of the capabil-
ity key key by transmitting Hash(regbody, chankey,
key) and Hash(repbody, chankey, key). Thus, key
does not appear in clear on the wire. Any ca-
pability keys for other secure network objects are
protected from eavesdroppers by encryption under
chankey.

4. Since only ¢ and s have chankey, encryption un-
der chankey protects the secrecy of the invocation
against eavesdroppers.

5. When an address space sends an identity object,
the receiver constructs an identity object that re-
flects the true identity of the sender. An address
space that runs our code will never pass an iden-
tity other than its own; but even if an address
space runs other code and succeeds in passing an
identity other than its own, it will not be believed.

6. When a reader or writer rw is passed in the
invocation of a method of an object of type
AuthNet0Obj.T (or SecNetObj.T), the voucher for

rw has type AuthNetObj.T (or SecNetObj.T, re-
spectively). Therefore, since operations on rw are
mediated by the voucher, they have the same se-
curity guarantees as the invocation.

4.3 Implementation in the Run-time
System

In order to implement our design, we made only a few
changes to the existing network objects code. Most of
these changes were in the implementation of StubLib,
the interface that the network objects run-time system
provides to stubs. (Stubs are machine-generated sub-
routines that are responsible for marshaling and un-
marshaling arguments and results of remote invoca-
tions.) Some changes were also required in the StubLib
interface itself, but they were minor; we added only two
lines of code to the stub generator to accommodate
them.

The network objects system allows the use of mul-
tiple transport protocols (such as TCP or X.25). Our
security implementation is independent of the choice
of transport protocol, so one can add support for new
protocols without altering or writing security code.

In the network objects system, when two address
spaces a; and as communicate, each of them has a
connection object consisting of a reader and a writer.
Data written into a;’s writer appears in as’s reader,
and vice versa. We embed the cryptography necessary
for the protocol of section 4.2 in our implementation
of connection objects. We do so by defining readers
and writers that apply cryptography to specified byte
ranges in the data they transmit. These readers and
writers have methods for computing cryptographic di-
gests, for encryption, and for decryption.

As described in section 4.2, each message of our pro-
tocol includes an identifier mid for protection against
replays. Were all address spaces single threaded, a sim-
ple sequence number would make a convenient message
identifier. In order to accommodate multi-threaded ad-
dress spaces, we associate each message with a secure
channel, and let mid include a secure channel identifier.
Next we explain secure channels and their use.

At each point in time, a secure channel from an ad-
dress space a; to an address space as determines a
channel key and a sequence number. (Two secure chan-
nels may have the same key.) Both a; and as know the
secure channel identifier and keep track of the key and
the sequence number associated with the secure chan-
nel. With each method invocation from a; to as that
uses a secure channel, both a; and as increment the
corresponding sequence number. When the key for a
secure channel is half way to its expiration, a; asks its



authentication agent for a new key; on seeing a new key
identifier, as obtains the new key from its own agent.

In the normal case, a secure invocation from a; to
as proceeds as follows. First a1 chooses a secure chan-
nel from a; to az on which there is no outstanding
invocation (and sets up a new secure channel if none
is available). Then a; constructs the request using the
channel key for the secure channel; mid is the concate-
nation of the sequence number and the secure channel
identifier. When a, receives the request, it compares
the sequence number in mid against its version of the
sequence number. The reply uses the same key and
message identifier as the request. When a; receives
the reply, it verifies that the key is still current and
checks mid.

In a more general scheme, the request and the reply
may use different keys and message identifiers. This
generality has some advantages; for example, it allows
an invocation that returns after a long wait to use a
fresh key. The changes in the definition of message
identifiers are considerable, so we do not discuss them
here.

5 Performance and Applications

Next, we describe our experiments with secure network
objects. We discuss the performance of our system and
two example applications.

5.1 Performance Measurements

We measured the performance of our system with the
same tests used for the original implementation of net-
work objects [2]. Table 1 presents a subset of our mea-
surements that characterizes the performance of secure
network objects in comparison with the performance of
the original implementation.

We measured round-trip invocation latency for re-
mote invocations. The first column of Table 1 (labelled
Old) gives the performance of method invocations in
the original implementation. The remaining three
columns concern method invocations in our implemen-
tation, to objects of type NetObj.T, AuthNet0Obj.T,
and SecNet0bj.T, respectively. The rows of Table 1 in-
dicate method invocations with different sorts of argu-
ments and with no results. In the null test, the method
has no arguments. In the ten integer test, the method
takes ten 64-bit integers as arguments. In the exist-
ing surrogate test, a network object is marshaled to a
receiver that already has a surrogate for it. The type
of the argument matches the security level of the in-
vocation, so for instance in the column Authentic the
argument has type AuthNet0Obj.T. The new surrogate

test is similar, except that the argument is unknown
to the receiver; therefore, the receiver must create a
new surrogate and register it at the owner (for garbage
collection).

The tests do not include the establishment of a chan-
nel key. The cost of establishing a channel key depends
on the implementation of the authentication agent; a
typical cost may be in the order of tens of milliseconds.
In most cases, this cost is insignificant when amortized
over multiple secure invocations.

We performed all our measurements using DEC
3000/700 workstations, which contain DECchip 21064a
processors at 225 MHz. On these workstations, our
MD5 implementation runs at over 15 MBytes/sec; our
DES implementation at 990 KBytes/sec. We used two
workstations connected by an ATM network with a
point-to-point bandwidth of over 16 MBytes/sec.

Our measurements show our system adds a non-
trivial cost to insecure invocations. This additional
cost is largely due to the expanded size of the wire rep-
resentation of network objects and of packet headers,
and to the associated processing. Secure network ob-
jects require a 24-byte object representation that iden-
tifies both the host and address space of the object
owner. The packet header format similarly requires a
host and address space identifier as well as a message
identifier.

Authentic invocations add a fixed minimum MD5
overhead of nearly 40 us per invocation. Each call
and return packet requires at least two 64-byte MD5
calculations, and both client and server must perform
these. The remainder of the incremental cost can be at-
tributed to the generation of a message identifier, and
the checking of timestamps, message identifiers, and
digests. The calls where an object is used as argument
incur the additional overhead of encrypting each object
capability under DES.

The difference between authentic and secret calls is
primarily due to DES processing. Since the method
identifier, return code, and MD5 digest are encrypted
as well as all arguments and results, there is a minimum
of 96 bytes of DES encryption/decryption (~100 us)
per secret invocation. (The encryption of the MD5
digest is not necessary, and we could eliminate it for
even better performance.) The ten integer test adds
80 bytes of arguments, to be encrypted and decrypted;
this accounts for another 160 us.

We have also measured the performance of read-
ers and writers. Streams with authenticity are cur-
rently limited to about 8 MBytes/sec. We observed
that 40% of the CPU cost is attributable to buffering
and TCP overhead; this explains why the bandwidth of
streams with authenticity is limited to around 55% of



| Test | Old

| Insecure | Authentic | Secret

Null 708 772 870 991

Ten integer 747 830 929 1244
Existing surrogate | 751 822 973 1146
New surrogate 1896 2044 2263 2430

Table 1. Performance of secure network objects (in us/call).

the raw MD5 bandwidth. Streams with both authen-
ticity and secrecy are severely limited by the speed of
DES. According to our measurements, such streams
have a throughput of about 870 KBytes/sec; this im-
plies that nearly 90% of the CPU is dedicated to DES
computation.

As these measurements demonstrate, the perfor-
mance of our system is acceptable for many applica-
tions. However, we believe that there remains much
room for optimization.

5.2 Example Applications

To date, we have had two preliminary but encourag-
ing experiences in the application of secure network
objects.

In the first application, we have implemented a se-
cure version of an answering service written by Rob De-
Line. This service is part of a telecollaboration system
and implements an answering machine for multi-media
messages. The answering machine is a network object
with methods create, retrieve, and delete. When
a message is created, it is stored under a special name,
called a cookie; the cookie is e-mailed to the intended
recipient of the message. An e-mail reader can then
present the cookie to retrieve or to delete the message.

The original answering service is not secure. In par-
ticular, cookies are essentially used as capabilities, yet
they are communicated in clear and are easy to guess.
Therefore, the service has neither authenticity nor se-
crecy.

Our version of the answering service addresses these
problems. Because of the performance limitations of
software encryption, we have not provided secrecy but
only authenticity. In our version, the answering ma-
chine is a network object of type AuthNetObj.T; it
would be easy to make it a network object of type
SecNetObj.T instead. We store the names of both the
sender and intended recipient with each message; ap-
propriate identity objects must be passed as arguments
of calls to the methods create, retrieve, and delete.
For example, only the sender and intended recipient of
a message can delete the message.

Our second application is a secure version of Ob-
lig [3]. Roughly, Obliq is to Modula-3 as Tecl is to

C. Obliq is an untyped, interpreted scripting language
that supports distributed object-oriented computation.
For example, it can be used to program computing
agents that roam over a network.

In our version of Obliq, each object is implemented
as a network object of type AuthNet0Obj.T. When an
Obliq object o is exported, it is explicitly tagged with
a list of the principals that may import it. The Obliq
run-time system encapsulates o in a reference monitor
of type AuthNet0Obj.T. This reference monitor provides
two methods: a method for access to o and a method
that returns the identity of the owner of the reference
monitor. The former method is responsible for per-
forming access control checks. The latter method al-
lows a client that imports o to verify that the server is
the expected one.

We have implemented the secure version of Obliq
that we have just described. This implementation pro-
vides evidence that we can build useful security mech-
anisms for Obliq fairly easily. On the other hand, we
do not yet have sufficient experience to decide which
security mechanism is most appropriate.

6 Related work

There has been much work on capabilities, in various
contexts. Communication systems with a pure capa-
bility model, like that of Amoeba [15], suffer from the
confinement problem. Several restrictions and vari-
ations of the capability model have been proposed.
For example, Gong suggests adding identities to ca-
pabilities [7]; Bacon et al. suggest restricting their life-
time [1]. Karger’s dissertation describes several oth-
ers [9]. The ideas in our use of capabilities can be
traced back through a vast literature.

There has also been substantial work in the area of
security and network communication systems (e.g., [25,
14, 21]). However, to our knowledge, there is at
present no object-oriented network communication sys-
tem with support for security. Next we discuss two
recent efforts in this area.

The Object Management Group has requested tech-
nology for integrating security in CORBA [19] and has
received submissions [20]; security work is currently in



progress in the Object Management Group. A gen-
eral architecture for security in CORBA has also been
proposed, and an implementation of the architecture
was announced as future work [5]. In summary, there
seems to be significant interest and activity on secu-
rity in CORBA, but (at the time of the writing of this
paper) not yet any resolution or experimental results.

The Spring object-oriented operating system [13]
supports both ACLs and capabilities. An accurate
comparison with secure network objects is difficult, as
there has not been a complete description of security
in Spring. Spring has more expressive capabilities than
our system; for example, several capabilities for an ob-
ject can give different privileges. Perhaps for this rea-
son, the combination of identities and capabilities is
less important in Spring, and has been explored less [8].
To date, Spring security has been implemented only on
a single processor; all network communication is unpro-
tected and capabilities are passed in clear.

7 Conclusions

Secure network objects behave like insecure network
objects, but preserve the intended semantics even in
the presence of an active attacker; optionally, secure
network objects provide secrecy from eavesdroppers. In
addition, identity objects form the basis for authentica-
tion in our system. The combination of secure network
objects with identity objects leads to a simple program-
ming model and a simple implementation, both in the
spirit of the original network objects. Thus we have
integrated security and network objects.

Overall, we felt that object-orientation was helpful.
Not surprisingly, we found that objects give rise to nat-
ural units of protection. We also took advantage of the
object type system to specify security properties, di-
rectly and economically.

In our description, we have tried to be precise, but
not formal. We believe that a more formal study would
be interesting. In particular, it would be worthwhile
to give notations and rules for reasoning about secure
network objects.
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